84 research outputs found

    Concentrations and sources of polycyclic aromatic hydrocarbons in surface coastal sediments of the northern Gulf of Mexico

    Get PDF
    Zucheng Wang is with the Department of Geography, Northeast Normal University, Changchun, China. -- Zucheng Wang and Zhanfei Liu are with the Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA. -- Kehui Xu is with the Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA – and – the Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, USA. -- Lawrence M Mayer is with the School of Marine Sciences, University of Maine, Walpole, ME, USA. -- Zulin Zhang is with The James Hutton Institute, Aberdeen, UK. -- Alexander S. Kolker is with Louisiana Universities Marine Consortium, Chauvin, LA, USA. -- Wei Wu is with the Department of Coastal Sciences, Gulf Coast Research Laboratory, The University of Southern Mississippi, Ocean Springs, MS, USA.Background: Coastal sediments in the northern Gulf of Mexico have a high potential of being contaminated by petroleum hydrocarbons, such as polycyclic aromatic hydrocarbons (PAHs), due to extensive petroleum exploration and transportation activities. In this study we evaluated the spatial distribution and contamination sources of PAHs, as well as the bioavailable fraction in the bulk PAH pool, in surface marsh and shelf sediments (top 5 cm) of the northern Gulf of Mexico. Results: PAH concentrations in this region ranged from 100 to 856 ng g−1, with the highest concentrations in Mississippi River mouth sediments followed by marsh sediments and then the lowest concentrations in shelf sediments. The PAH concentrations correlated positively with atomic C/N ratios of sedimentary organic matter (OM), suggesting that terrestrial OM preferentially sorbs PAHs relative to marine OM. PAHs with 2 rings were more abundant than those with 5–6 rings in continental shelf sediments, while the opposite was found in marsh sediments. This distribution pattern suggests different contamination sources between shelf and marsh sediments. Based on diagnostic ratios of PAH isomers and principal component analysis, shelf sediment PAHs were petrogenic and those from marsh sediments were pyrogenic. The proportions of bioavailable PAHs in total PAHs were low, ranging from 0.02% to 0.06%, with higher fractions found in marsh than shelf sediments. Conclusion: PAH distribution and composition differences between marsh and shelf sediments were influenced by grain size, contamination sources, and the types of organic matter associated with PAHs. Concentrations of PAHs in the study area were below effects low-range, suggesting a low risk to organisms and limited transfer of PAHs into food web. From the source analysis, PAHs in shelf sediments mainly originated from direct petroleum contamination, while those in marsh sediments were from combustion of fossil fuels.Marine [email protected]

    Modulation of multidrug resistance with dexniguldipine hydrochloride (B8509-035) in the CC531 rot colon carcinoma model

    Get PDF
    The chemosensitizing potency of dexniguldipine hydrochloride (B8509-035) on epidoxorubicin was assessed in a multidrug-resistant (MDR) tumour model, the intrinsic MDR rat colon carcinoma CC531. In vitro in the sulphorhodamine B cell-viability assay the cytotoxicity of epidoxorubicin was increased approximately 15-fold by co-incubation with 50 ng/ml dexniguldipine. In vivo concentrations of dexniguldipine 5 h after a single oral dose of 30 mg/kg were 72 (± 19 SD) ng/ml in plasma and 925 (± 495 SD) ng/g in tumour tissue. Levels of the metabolite of dexniguldipine, M-1, which has the same chemosensitizing potential, were 26 (± 6 SD) ng/ml and 289 (± 127 SD) ng/g respectively. The efficacy of treatment with 6 mg/kg epidoxorubicin applied intravenously combined with 30 mg kg-1 day-1 dexniguldipine administered orally for 3 days prior to epidoxorubicin injection was evaluated on tumours grown under the renal capsule. Dexniguldipine alone did not show antitumour effects in vivo. Dexniguldipine modestly, but consistently, potentiated the tumour-growth-inhibiting effect of epidoxorubicin, reaching statistical significance in two out of four experiments. In conclusion, these experiments show that dexniguldipine has potency as an MDR reverter in vitro and in vivo in this solid MDR tumour model

    Pharmacokinetics of the multidrug-resistance-converting drug dexniguldipine and its pyridine metabolite M-1 in the plasma, tumor, and renal tissue of tumor-bearing Wag/Rij rats

    Get PDF
    The pharmacokinetics of oral dexniguldipine, a new multidrug-resistance- modifying agent under clinical evaluation, and its pyridine metabolite M-1 were determined in plasma, tumor, and renal tissue in Wag/Rij rats bearing a multidrug-resistant CC531 colon adenocarcinoma tumor under the renal capsule. The pharmacokinetics were studied in four experiments. After a single administration of dexniguldipine (30 mg/kg), tumors and kidneys were collected after 5 (experiment 1), 24 (experiment 2), and 48 h (experiment 3). In the fourth experiment, dexniguldipine was given once daily for 3 consecutive days at a dose of 30 mg/kg. In all experiments, plasma samples were collected at regular intervals. The concentrations of dexniguldipine and M-1 could be determined in plasma in most of the rats at up to 32 h after drug administration. The area under the curve (AUC) of dexniguldipine and M- 1 varied by a factor of 2-6 in the four experiments. High tumor-tissue concentrations of dexniguldipine were observed. The concentrations were highest in the multiple-dose experiment (2014 ± 1005 ng/g tissue). High degrees of correlation (>08) were established between the concentrations of dexniguldipine measured in plasma and tumor as well as renal tissue. Overall, tumor-tissue concentrations of M-1 comprised one-third of the dexniguldipine concentrations measured

    An appeal to the global health community for a tripartite innovation: an ‘‘Essential Diagnostics List,’’ ‘‘Health in All Policies,’’ and ‘‘See-Through 21st Century Science and Ethics"

    Get PDF
    Diagnostics spanning a wide range of new biotechnologies, including proteomics, metabolomics, and nanotechnology, are emerging as companion tests to innovative medicines. In this Opinion, we present the rationale for promulgating an ‘‘Essential Diagnostics List.’’ Additionally, we explain the ways in which adopting a vision for ‘‘Health in All Policies’’ could link essential diagnostics with robust and timely societal outcomes such as sustainable development, human rights, gender parity, and alleviation of poverty. We do so in three ways. First, we propose the need for a new, ‘‘see through’’ taxonomy for knowledge-based innovation as we transition from the material industries (e.g., textiles, plastic, cement, glass) dominant in the 20th century to the anticipated knowledge industry of the 21st century. If knowledge is the currency of the present century, then it is sensible to adopt an approach that thoroughly examines scientific knowledge, starting with the production aims, methods, quality, distribution, access, and the ends it purports to serve. Second, we explain that this knowledge trajectory focus on innovation is crucial and applicable across all sectors, including public, private, or public–private partnerships, as it underscores the fact that scientific knowledge is a co-product of technology, human values, and social systems. By making the value systems embedded in scientific design and knowledge co-production transparent, we all stand to benefit from sustainable and transparent science. Third, we appeal to the global health community to consider the necessary qualities of good governance for 21st century organizations that will embark on developing essential diagnostics. These have importance not only for science and knowledge based innovation, but also for the ways in which we can build open, healthy, and peaceful civil societies today and for future generations

    Treatment of osteochondral lesions of the talus: a systematic review

    Get PDF
    The aim of this study was to summarize all eligible studies to compare the effectiveness of treatment strategies for osteochondral defects (OCD) of the talus. Electronic databases from January 1966 to December 2006 were systematically screened. The proportion of the patient population treated successfully was noted, and percentages were calculated. For each treatment strategy, study size weighted success rates were calculated. Fifty-two studies described the results of 65 treatment groups of treatment strategies for OCD of the talus. One randomized clinical trial was identified. Seven studies described the results of non-operative treatment, 4 of excision, 13 of excision and curettage, 18 of excision, curettage and bone marrow stimulation (BMS), 4 of an autogenous bone graft, 2 of transmalleolar drilling (TMD), 9 of osteochondral transplantation (OATS), 4 of autologous chondrocyte implantation (ACI), 3 of retrograde drilling and 1 of fixation. OATS, BMS and ACI scored success rates of 87, 85 and 76%, respectively. Retrograde drilling and fixation scored 88 and 89%, respectively. Together with the newer techniques OATS and ACI, BMS was identified as an effective treatment strategy for OCD of the talus. Because of the relatively high cost of ACI and the knee morbidity seen in OATS, we conclude that BMS is the treatment of choice for primary osteochondral talar lesions. However, due to great diversity in the articles and variability in treatment results, no definitive conclusions can be drawn. Further sufficiently powered, randomized clinical trials with uniform methodology and validated outcome measures should be initiated to compare the outcome of surgical strategies for OCD of the talus

    Global climate change recorded in coastal sediments

    No full text
    <p>An acceleration of global sea-level rise recorded in coastal sediments.</p
    corecore