21 research outputs found

    Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research

    Full text link
    This review discusses the current status of supermassive black hole research, as seen from a purely observational standpoint. Since the early '90s, rapid technological advances, most notably the launch of the Hubble Space Telescope, the commissioning of the VLBA and improvements in near-infrared speckle imaging techniques, have not only given us incontrovertible proof of the existence of supermassive black holes, but have unveiled fundamental connections between the mass of the central singularity and the global properties of the host galaxy. It is thanks to these observations that we are now, for the first time, in a position to understand the origin, evolution and cosmic relevance of these fascinating objects.Comment: Invited Review, 114 pages. Because of space requirements, this version contains low resolution figures. The full resolution version can be downloaded from http://www.physics.rutgers.edu/~lff/publications.htm

    Multiwavelength observations of short time-scale variability in NGC 4151. IV. Analysis of multiwavelength continuum variability

    Full text link
    This paper combines data from the three preceding papers in order to analyze the multi-waveband variability and spectral energy distribution of the Seyfert~1 galaxy NGC~4151 during the December 1993 monitoring campaign. The source, which was near its peak historical brightness, showed strong, correlated variability at X-ray, ultraviolet, and optical wavelengths. The strongest variations were seen in medium energy (∌\sim1.5~keV) X-rays, with a normalized variability amplitude (NVA) of 24\%. Weaker (NVA = 6\%) variations (uncorrelated with those at lower energies) were seen at soft Îł\gamma-ray energies of ∌\sim100~keV. No significant variability was seen in softer (0.1--1~keV) X-ray bands. In the ultraviolet/optical regime, the NVA decreased from 9\% to 1\% as the wavelength increased from 1275~\AA\ to 6900~\AA. These data do not probe extreme ultraviolet (1200~\AA\ to 0.1~keV) or hard X-ray (2--50~keV) variability. The phase differences between variations in different bands were consistent with zero lag, with upper limits of \ls0.15~day between 1275~\AA\ and the other ultraviolet bands, \ls0.3~day between 1275~\AA\ and 1.5~keV, and \ls1~day between 1275~\AA\ and 5125~\AA. These tight limits represent more than an order of magnitude improvement over those determined in previous multi-waveband AGN monitoring campaigns. The ultraviolet fluctuation power spectra showed no evidence for periodicity, but were instead well-fitted with a very steep, red power-law (a=−2.5 a = -2.5 ). If photons emitted at a ``primary" waveband are absorbed by nearby material and ``reprocessed" to produce emission at a secondary waveband, causality arguments require that variations in the secondary band follow those in the primary band. The tight interband correlation and limits on the ultraviolet andComment: 35 pages, LaTeX (including aaspp4), including 7 PostScript figures; To appear in the ApJ (October 20, 1996) Vol. 47

    Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. IX. Ultraviolet Observations of Fairall 9

    Get PDF
    An 8 month monitoring campaign on the Seyfert 1 galaxy Fairall 9 has been conducted with the International Ultraviolet Explorer in an attempt to obtain reliable estimates of continuum-continuum and continuumÈemission-line delays for a high-luminosity active galactic nucleus (AGN). While the results of this campaign are more ambiguous than those of previous monitoring campaigns on lower luminosity sources, we Ðnd general agreement with the earlier results : (1) there is no measurable lag between ultraviolet continuum bands, and (2) the measured emission-line time lags are very short. It is especially notable that the Lyα + N V emission-line lag is about 1 order of magnitude smaller than determined from a previous campaign by Clavel, Wamsteker, & Glass (1989) when Fairall 9 was in a more luminous state. In other well-monitored sources, speciÐcally NGC 5548 and NGC 3783, the highest ionization lines are found to respond to continuum variations more rapidly than the lower ionization lines, which suggests a radially ionization-stratified broad-line region. In this case, the results are less certain, since none of the emission-line lags are very well determined. The best-determined emission line lag is Lyα + N V, for which we find that the centroid of the continuum—emission-line crosscorrelation function is tcent ≈14—20 days. We measure a lag tcent<~4 days for He II λ1640; this result is consistent with the ionization-stratification pattern seen in lower luminosity sources, but the relatively large uncertainties in the emission-line lags measured here cannot rule out similar lags for Lyα + N V and He II λ1640 at a high level of significance. We are unable to determine a reliable lag for C IV λ1550, but we note that the profiles of the variable parts of Lyα and C IV λ1550 are not the same, which does not support the hypothesis that the strongest variations in these two lines arise in the same region
    corecore