22 research outputs found

    Nanoscale Analysis by EFTEM and FIB-Tomography for Optimization of Thin-Film Silicon Solar Cells

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 - August 5, 201

    Tuning Properties of Iron Oxide Nanoparticles in Aqueous Synthesis without Ligands to Improve MRI Relaxivity and SAR.

    Get PDF
    Aqueous synthesis without ligands of iron oxide nanoparticles (IONPs) with exceptional properties still remains an open issue, because of the challenge to control simultaneously numerous properties of the IONPs in these rigorous settings. To solve this, it is necessary to correlate the synthesis process with their properties, but this correlation is until now not well understood. Here, we study and correlate the structure, crystallinity, morphology, as well as magnetic, relaxometric and heating properties of IONPs obtained for different durations of the hydrothermal treatment that correspond to the different growth stages of IONPs upon initial co-precipitation in aqueous environment without ligands. We find that their properties were different for IONPs with comparable diameters. Specifically, by controlling the growth of IONPs from primary to secondary particles firstly by colloidal and then also by magnetic interactions, we control their crystallinity from monocrystalline to polycrystalline IONPs, respectively. Surface energy minimization in the aqueous environment along with low temperature treatment is used to favor nearly defect-free IONPs featuring superior properties, such as high saturation magnetization, magnetic volume, surface crystallinity, the transversal magnetic resonance imaging (MRI) relaxivity (up to r₂ = 1189 mM(-1)·s(-1) and r₂/r₁ = 195) and specific absorption rate, SAR (up to 1225.1 W·gFe(-1))

    3D Ordering at the Liquid–Solid Polar Interface of Nanowires

    Get PDF
    The nature of the liquid–solid interface determines the characteristics of a variety of physical phenomena, including catalysis, electrochemistry, lubrication, and crystal growth. Most of the established models for crystal growth are based on macroscopic thermodynamics, neglecting the atomistic nature of the liquid–solid interface. Here, experimental observations and molecular dynamics simulations are employed to identify the 3D nature of an atomic‐scale ordering of liquid Ga in contact with solid GaAs in a nanowire growth configuration. An interplay between the liquid ordering and the formation of a new bilayer is revealed, which, contrary to the established theories, suggests that the preference for a certain polarity and polytypism is influenced by the atomic structure of the interface. The conclusions of this work open new avenues for the understanding of crystal growth, as well as other processes and systems involving a liquid–solid interface

    Geometrical Effect in 2D Nanopores

    Get PDF
    A long-standing problem in the application of solid-state nanopores is the lack of the precise control over the geometry of artificially formed pores compared to the well-defined geometry in their biological counterpart, that is, protein nanopores. To date, experimentally investigated solid-state nanopores have been shown to adopt an approximately circular shape. In this Letter, we investigate the geometrical effect of the nanopore shape on ionic blockage induced by DNA translocation using triangular h-BN nanopores and approximately circular molybdenum disulfide (MoS2) nanopores. We observe a striking geometry-dependent ion scattering effect, which is further corroborated by a modified ionic blockage model. The well-acknowledged ionic blockage model is derived from uniform ion permeability through the 2D nanopore plane and hemisphere like access region in the nanopore vicinity. On the basis of our experimental results, we propose a modified ionic blockage model, which is highly related to the ionic profile caused by geometrical variations. Our findings shed light on the rational design of 2D nanopores and should be applicable to arbitrary nanopore shapes.This work was financially supported by the European Research Council (grant 259398, PorABEL), by a Swiss National Science Foundation (SNSF) Consolidator grant (BIONIC BSCGI0_157802), by SNSF Sinergia grant 147607 ... The work performed in Cambridge was supported by the EPSRC Cambridge NanoDTC, EP/L015978/1. The work performed in UIUC was supported by grants from Oxford Nanopore Technology and the Seeding Novel Interdisciplinary Research Program of the Beckman Institute. The UIUC authors gratefully acknowledge also supercomputer time provided through the Extreme Science and Engineering Discovery Environment (XSEDE) grant MCA93S028 and by the University of Illinois at Urbana-Champaign on the TAUB cluster

    The Real Carbon K-Edge

    No full text

    Imaging nonradiative point defects buried in quantum wells using cathodoluminescence

    No full text
    Crystallographic point defects (PDs) can dramatically decrease the efficiency of optoelectronic semiconductor devices, many of which are based on quantum well (QW) heterostructures. However, spatially resolving individual nonradiative PDs buried in such QWs has so far not been demonstrated. Here, using high-resolution cathodoluminescence (CL) and a specific sample design, we spatially resolve, image, and analyze nonradiative PDs in InGaN/GaN QWs at the nanoscale. We identify two different types of PDs by their contrasting behavior with temperature and measure their densities from 1014&nbsp;cm&ndash;3&nbsp;to as high as 1016&nbsp;cm&ndash;3. Our CL images clearly illustrate the interplay between PDs and carrier dynamics in the well: increasing PD concentration severely limits carrier diffusion lengths, while a higher carrier density suppresses the nonradiative behavior of PDs. The results in this study are readily interpreted directly from CL images and represent a significant advancement in nanoscale PD analysis.</p

    Direct reduction of synthetic rutile using the FFC process to produce low-cost novel titanium alloys

    Get PDF
    Typically, pure TiO2 in pellet form has been utilised as the feedstock for the production of titanium metal via the solid state extraction FFC process. For the first time, this paper reports the use of loose synthetic rutile powder as the feedstock, along with its full characterisation at each stage of the reduction. The kinetics and mechanism of the reduction of synthetic rutile to a low oxygen titanium alloy have been studied in detail using a combination of X-ray diffraction, scanning electron microscopy, oxygen analysis, and X-ray fluorescence techniques. Partial reductions of synthetic rutile enabled a reaction pathway to be determined, with full reduction to a low oxygen titanium alloy occurring at 16 h. Major remnant elements from the Becher process within the feedstock were followed throughout the process, with a particular emphasis placed on the reduction behaviour of iron within the alloy. Although impurities such as Fe, Al, and Mn are found in the feedstock and alloy, no major deviations from previously reported reaction mechanisms and phase transformations utilising a pure porous (25–30 % porosity) TiO2 precursor were found. Following reduction, the titanium alloy powder produced from synthetic rutile (approx. 3500 ppm oxygen) has been consolidated via an emerging rapid sintering technique, and its microstructure analysed. This work will act as the baseline for future alloy development projects aimed at producing low-cost titanium alloys directly from synthetic rutile. Producing titanium alloys directly from synthetic rutile may negate the use of master alloy additions to Ti in the future
    corecore