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Abstract  

A long-standing problem in the application of solid-state nanopores is the lack of the 

precise control over the geometry of artificially formed pores compared to the well-

defined geometry in their biological counterpart, i.e. protein nanopores. To date, 

experimentally investigated solid-state nanopores have been shown to adopt 

approximately circular shape. In this letter, we investigate the geometrical effect of the 

nanopore shape on ionic blockage induced by DNA translocation using triangular h-

BN nanopores and approximately circular molybdenum disulfide (MoS2) nanopores. 

We observe a striking geometry-dependent ion scattering effect, which is further 

corroborated by a modified ionic blockage model. The well-acknowledged ionic 

blockage model is derived from uniform ion permeability through the 2D nanopore 

plane and hemisphere like access region in the nanopore vicinity. Based on our 

experimental results, we propose a modified ionic blockage model, which is highly 

related to the ionic profile caused by geometrical variations. Our findings shed light on 
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the rational design of 2D nanopores and should be applicable to arbitrary nanopore 

shapes.  

Keywords: Solid-state nanopores, 2D materials, molybdenum disulfide (MoS2), 

hexagonal boron nitride (h-BN), high-resolution transmission electron microscopy 

(HRTEM), ion transport 

 

Nanopores formed in 2D materials can be considered as apertures that shape ion fluxes 

through their small volumes.1-5 Typical nanopores, reported so far, exhibit geometrical 

shapes that can be approximated to that of a circle having perfect symmetry.6 Such 

nanopores have been made in a top-down manner, e.g., electron beam sputtering,7-9 

dielectric breakdown10, 11 or electrochemical etching.12 So far, there has been no report 

about the precise control over the geometry of solid-state nanopores. Interestingly, a 

unique property of hexagonal boron nitride (h-BN) few-layers has been revealed by 

previous transmission electron microscopy (TEM) studies, where triangular defects or 

nanopores can be created or enlarged while maintaining their intrinsic triangular 

shape.13-15 However, there is no clear understanding about the intrinsic defects in 

pristine single-layer h-BN, which has a significant influence on ion transport.  

Ion transport through atomically pierced 2D membranes has drawn much attention.16 

Understanding ion scattering inside nanopores is of vital importance to single molecule 

resistive pulse sensing,17 however, it has been overlooked in the past. It is not clear if 

continuum theories describing the ion flux in bulk can be directly applied to the systems 

whose dimensions are comparable to the dimensions of ions.5, 18 Protein ion channels 

have well-defined 3D geometries, which facilitate their biological functions.19 More 

recently, single molecule DNA sequencing has been achieved using mutated protein 

nanopores together with polymerase motor.20 Later on, we demonstrated the first 

example of identifying single-nucleotides in single-layer MoS2 nanopores.21 However, 

due to the lack of the control over the geometry of the nanopores formed in solid-state 

materials, signal fluctuation stems from such a structural irregularity, which further 

hinders the high-fidelity DNA sequencing. To design best performing nanopores in the 

solid-state materials, one needs to gain fundamental understanding about how ions 

transport through the channels having different geometries. Here, we report the first 

experimental and theoretical results on such a crucial, yet overlooked phenomenon. We 
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observe a striking geometry-dependent ion scattering effect, which is further 

corroborated by a modified ionic blockage model. This model complements the well-

acknowledged conductance models22, 23 describing the ions flux inside the nanopore 

confinement by introducing a factor for the relative ion resistivity inside the pore. Our 

findings shed lights on the rational design of 2D nanopores and should be applicable to 

arbitrary nanopore shape. With this work, we provide possible roadmap, first 

computationally to build optimal nanopore geometry, and later experimentally explore 

the possibilities of building such a nanopore. 

Figure 1a shows a schematic illustration of our nanopore device. Similarly to other 

nanopores made of 2D material,1, 4 a single-layer of h-BN, grown by CVD (chemical 

vapor deposition), is suspended over a small opening in a SiNx membrane. The 

transferred h-BN domains can be easily identified by optical microscopy (Figure 1b) 

due to their characteristic triangular shape.24, 25 Further details on the growth, transfer, 

and fabrication process can be found in SI and Figure S1. Interestingly, not only do the 

h-BN domains (~10 µm side length) grow as triangular islands, but the atomic-scale 

defects within the lattice also adopt a characteristic triangular shape. Such defects in 

single-layer h-BN can be activated either by heating or by electron beam irradiation.26 

Figure 1c shows a high-resolution TEM (HRTEM) image of a typical triangular 

nanopore in single-layer h-BN, with nitrogen (N)-terminated edges13-15 while Figure 

1d illustrates the atomic arrangement of its defective h-BN lattice. The topological 

rigidity of such defects is related to the selective removal of the atoms next to a vacancy 

or at the edge of a large hole compared to the atoms in the pristine lattice. This 

phenomenon has already been observed primarily by TEM under electron beam 

irradiation. According to the previous TEM studies, two-coordinated N-atoms have a 

much lower ejection probability than two-coordinated boron (B)-atoms, which results 

in a zig-zag removal of atoms along the defect edge.15 Remarkably, during the entire 

irradiation process, the pore shows a propensity to adapt a triangular shape which we 

also observe and discuss later in more detail. In contrast, the MoS2 nanopore adopts an 

approximately circular geometry (Figure 1e), as schematically illustrated in Figure 1f, 

since, in the MoS2 lattice, there is a tendency towards random etching or knock-on 

displacement of atoms under electron beam irradiation. From the energetic perspective, 

the final geometry of such a formed MoS2 nanopore will have a circular shape. 

Interestingly, orientation preference of defects has not yet been observed for any 2D 
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materials other than h-BN, which makes this material a good candidate for nanopore 

sensing. In order to understand the ionic flow profiles inside these two types of 

nanopores with different symmetries, we use the method of moments (MoM)27, 28 to 

calculate the total capacitance (C) of a triangular and circular conducting plate (the 

details can be found in the SI). These calculations allow us to obtain the charge 

distribution along the plate, where we observe that in the case of triangular nanopores 

in h-BN, the edges, and especially the corners, display large variations in charge density 

distribution (Figure 1g). 

We utilized TEM to inspect further the nanoscopic features of single-layer h-BN and 

MoS2. To minimize the beam induced knock-on damage of the monolayer, we exploited 

an aberration-corrected (with double Cs corrector) FEI Titan Themis TEM (60-300) 

operated at either 80 kV or 60 kV acceleration voltage. For HRTEM imaging the 

incident electron beam was monochromated in order to reduce the effects of chromatic 

aberration, thereby improving contrast from light B and N atoms for adequate image 

interpretation. The low-magnification image in Figure S2a shows a suspended area of 

the h-BN covering a SiNx aperture, where only a little trace of PMMA residue can be 

seen. Special care should be taken when cleaning the PMMA in order to obtain 

atomically resolved HRTEM imaging as well for high sensitivity nanopore sensing. A 

HRTEM image of the h-BN lattice can be seen in Figure 2a, where the lattice is 

represented by a white-atom contrast29, 30 that is directly related to actual atomic 

positions. While the contrasts of B and N atoms are similar, they are distinguishable 

under suitable imaging conditions. The inset shows the Fast Fourier Transform (FFT) 

of this perfect lattice, confirming its crystalline structure with hexagonal symmetry. 

Besides the first set of reflections, from which we can derive the h-BN lattice constant 

of 2.5 Å, the second set of reflections corresponds to the 1.4 Å separation of B-N atoms. 

Figure S3 shows examples of HRTEM imaging of h-BN represented in black-atom 

contrast, where instead the edge atom arrangement and point defects cannot be readily 

interpreted. For comparison, an HRTEM image of the MoS2 lattice is shown in Figure 

2b with its corresponding FFT (inset), revealing the characteristics of the lattice in 

reciprocal space.  

As mentioned above, a unique feature of h-BN compared to other 2D materials 

(graphene, MoS2, etc.) is that its defects can maintain triangular shapes. Figure 2c 

shows time-lapse frames (frames acquired with an exposure time of 0.1 s) depicting a 
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triangular h-BN nanopore evolving in size under electron beam irradiation (Movie S1). 

This is supported by the TEM images in Figure S2b, where, after the chains of B and 

N atoms are subsequently removed along the edges in a zig-zag manner, and the 

triangular defect enlarges to a size greater than 10 nm in side length. Conversely, MoS2 

adopts a less regular, approximately circular shape during electron beam irradiation, as 

shown in the time-lapse frames (/0.1 s) in Figure 2d. During the prolonged irradiation, 

we observe another interesting behavior of h-BN, where adjacent small triangular 

nanopores can merge to form a larger triangular nanopore as displayed in Figure S2c 

and Figure S2d. This is due to the high mobility of the B and N atoms under electron 

beam irradiation which favors their rearrangement into more stable configurations. 

However, due to the fast dynamics of defect growth under electron beam exposure, it 

is extremely challenging to visualize the pristine h-BN defects (i.e. defects present from 

the growth stage/transfer). We therefore exploited specimen heating capability in TEM 

in order to preserve the pristine nanopore geometry during imaging.31 As shown in 

Movie S2, at high specimen temperature and during a longer observation time (2s), the 

triangular defects do not show significant growth. In this way, we were able to verify 

that the defects in as-transferred single-layer h-BN also adopt a triangular shape. 

Moreover, we were able to measure the density of pristine h-BN defects by using a 

MAADF (medium-angle annular dark-field)-scanning(S)TEM imaging condition (i.e, 

a low acceleration voltage of 60 kV and a low probe current of 30 pA) combined with 

specimen heating, albeit with a tradeoff of reduced atomic contrast in the h-BN lattice 

compared to the HRTEM imaging. As shown in Figure S4, we found a low defect 

density (0.001 nm-2), which we believe comes inherently from the growth or the transfer 

steps.  

After TEM characterization, we focus on the use of h-BN as 2D membrane for nanopore 

sensing.  Current-voltage (IV) characteristics give direct feedback of the pore formation 

and the related pore size. It is worth noting that a small hBN nanopore is quite stable 

during experiments which can be seen in the example of sequential IV measurements 

given in Figure 2e, resulting in 0.2 nm enlarging of the pore size during two hours. 

Although these devices were not exposed to electron beam, we found that only 20% of 

successfully transferred samples had the conductance <1nS which we consider as an 

intact h-BN membrane. We assume that the rest 80% of the devices already had a 

certain level of defect. From a large statistical dataset, we found a discrete trend in the 
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conductance spanning over a large range as shown in Figure 2f. Here, we only used the 

first set of IV to calculate the initial open pore conductance. We can tentatively attribute 

this discontinuity to certain energetically favorable sizes, which we do not observe in 

other 2D nanopores. The major plateaus in the conductance distribution corresponds to 

triangular defects in the h-BN lattice with different lengths. As shown in Figure 2g, we 

assume that the triangular defect is N-terminated and possesses several unstable 

dangling N atoms along the triangle edge marked by the dashed circles, giving rise to 

minor modulations in the conductance. The partial removal along the N-terminated 

edges can be seen in the Figure 2h.  

In the case of a defect-free h-BN membrane, an electrochemical reaction (ECR) 

method12 (previously used for MoS2 nanopore formation) is used to create a nanopore 

in h-BN by applying trans-membrane voltage higher than the local threshold potential 

to remove B and N atoms. Figure S5a shows a representative ECR current trace to 

demonstrate the pore formation process, where a nanopore is formed at 3 V. The pore 

growth manifests itself in a continuous increase in the ionic current. Due to the 

relatively high ECR threshold voltage of 3 V it is challenging to observe single atom 

nanopore opening as recently reported for MoS2.12 The threshold bias observed here in 

the liquid/solid junction is in good agreement with a previous STM study.32 Figure S5b 

shows the IV characteristics of this device before and after the ECR process with a clear 

transition from an insulating, pore-free h-BN membrane to a porous h-BN membrane 

containing a single nanopore. In this work we focus on the effects that a well-defined 

nanopore geometry has on the conductance and biomolecular sensing, therefore, we do 

not use any ECR-formed nanopores as we cannot directly assess the resulting pore 

geometry.  

In order to test the sensing capability of a triangular h-BN nanopore, we used a device 

already having a 48 nS open pore conductance in 1M KCl. We injected 1k bp dsDNA 

into the cis-side of the flowcell and applied positive potential on the trans-side to drag 

the negatively charged DNA passing through the pore. As expected, transient blockages 

are observed in short experiment time (Figure 3a). The power density spectrum (PSD) 

in Figure3b exhibits a similar noise performance compared to MoS2 nanopores. RMS 

noise is ~ 35 pA at 10k lowpass filtering, which is comparable to MoS2 nanopores.12, 33 

The major contribution is low frequency 1/f noise,34 which can be reduced significantly 

by shrinking the region of suspended h-BN to a circular aperture with a diameter of 50 
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nm. In this way, we obtain a very good signal to noise ratio (SNR) which is up to 20. 

Figure 3c shows a scatter plot of translocation events recorded at 400 mV with some 

representative events selected displayed in Figure 3d. As can be observed in Figure 

S6, the amplitudes are proportional to applied bias, indicating a voltage-driven process. 

Quantitatively, 0.47 ± 0.18 nA, 0.67 ± 0.21 nA and 1.03 ± 0.34 nA are found for 200 

mV, 300 mV and 400 mV, respectively. Moreover, while the amplitude at each voltage 

displays unimodal distribution, the dwell time shows bimodal distribution. The first 

distribution which is in the fast translocation regime is consistent with a free 

translocation time for 1k bp length DNA, which is in the range of ~ 100 s. Interestingly, 

the second distribution in the slow translocation regime is in the range of 5-100 ms, 

indicating that a retardation mechanism governs the translocation dynamics. In the 

previous reports, slow translocations are in the long tail of the dwell time distribution.35-

37 Here, we suggest a geometrical retardation mechanism stemming from the unique 

triangular shape of h-BN nanopores. As sketched in Figure 3e, we suggest that the 

movement along the vertical axis and off-axis movement are responsible for fast 

translocation and slow translocation, respectively. It is easy to understand that a 

translocated DNA molecule experiences high steric hindrance when it moves off-

centered which could be the major reason for the observed large population of slow 

translocation events. In larger h-BN nanopores, we observe significantly fewer slow 

translocations. 

To further explore the origin of the fast and slow translocation, we performed molecular 

dynamics simulations of a dsDNA molecule translocating38, 39 through a BN nanopore 

along the on-axis (left) and off-axis (right) paths, respectively. For this purpose, a 

mathematical boundary perpendicular to the BN sheet was applied to constrain the 

lateral movement of the DNA around the BN sheet plane (Figure 4a). It was found that 

the DNA permeates through the pore along the vertical axis much faster than off-axis 

in good agreement with our above speculation (Figure 4b). Further analysis suggests 

that the slow off-axis translocation is the consequence of the strong interaction between 

the h-BN pore edge and the dsDNA (Figure 4c).  The nature of these interactions 

between the DNA and triangular h-BN nanopore is due to van-der Waal’s and 

electrostatic forces, which are taken into account in the Force Field parameters of the 

MD simulations. This is further outlined in section 6 of the SI.   
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Another striking finding is that the observed current blockages in h-BN are consistently 

lower than the values in MoS2 nanopores with comparable open pore conductance. To 

obtain more detailed information about the impact of nanopore size and geometry on 

the conductance, we decided to use dsDNA as a molecular ruler. For each experimental 

DNA translocation data set, we plotted the ΔGrelative vs. Gopen where ΔGrelative is a relative 

conductance drop given by: (Gopen - Gblocked)/ Gopen while Gopen and Gblocked are the 

conductances for an open pore and pore blocked by DNA, respectively. Because of 

notable spreading of translocation data, we defined different event clusters by using 

Gaussian Mixture Distribution fitting where each cluster is represented with a single 

center point and a standard deviation in x and y. More information can be found in the 

SI and in Figure S8. The resulting data was then used to develop a conductance model 

which provides more insights into the ionic and DNA transport through triangular 

nanopores. 

The well-acknowledged conductance model22, 23  that describes the passage of ions 

through the nanopore includes two terms, which are the channel resistance (the 

nanopore itself) and the access resistance40 (the vicinity of the nanopore). Surfaces 

charges of h-BN and MoS2 are similar, and play a significant role at low ionic strength 

(10mM).41 In this work we focus on the geometrical effect, therefore we tried to 

minimize the surface charge influence by using a solution of high ionic strength (1M). 

Equation 1 gives the analytic expression of this model, where , L, and d are the ionic 

conductivity of the solution (10.5 S/m for 1M KCl at 23 °C),23 the effective membrane 

thickness (1.6 nm and 1.4 nm for MoS2 and h-BN, respectively, accounting for the 

hydrodynamic effect),4, 42 and the equivalent nanopore diameter for a perfect circle, 

respectively.  

ܩ ൌ ௕௨௟௞ߪ ቂ
ସ௅

గௗమ
൅ ଵ

ௗ
ቃ
ିଵ

  (1) 

This model assumes that the ion mobility inside the nanopore is identical to the bulk 

mobility without restraint. For typical circular-shaped nanopores, the channel effect and 

the access effect are equally dominant due to the perfect symmetry of the circular shape. 

However, a triangular h-BN nanopore has three-fold symmetry, giving rise to a non-

uniformity in the ion distribution inside and in the vicinity of the nanopore. This 

distribution of the ion flux within the pore for different pore shapes, studied using MD 

simulations, is outlined in section 6 of the SI. It is worth noting that few reports have 
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discussed geometrical effects due to the difficulty in the fabrication methods.43, 44 The 

modifications of the conductance model are mainly based on the z-axis variation 

perpendicular to the nanopore plane. In our case, two important factors should be 

reconsidered due to geometry or symmetry breaking, which are the calculation of the 

capacitance determined by the spatial charge density distribution and the relative ion 

conductivity inside the nanopore. Both factors are highly dependent on the geometry. 

Here, we can make two mutually exclusive assumptions, one where the intrinsic pore 

resistance is dominant and the other where, conversely, the access resistance dominates. 

Both models have only a single unknown parameter, while all other parameters can be 

obtained unambiguously. We first discuss a triangular (equilateral) pore, for which the 

expressions for the pore and access resistances are given by ܴ௣௢௥௘ ൌ ௣௢௥௘ߩ	 ܮ4 √3ܽଶ⁄  

and ܴ௔௖௖௘௦௦ ൌ ௔௖௖௘௦௦ߩ	 ߝ ⁄	௱ܥ , respectively, where L is the hydrodynamic thickness of h-

BN membrane, a is the edge length of the triangular pore, ε is the permittivity in free 

space and CΔ is the capacitance of the triangular plate (details of the calculations are 

available in the SI). ρpore and ρaccess are the resistivity of the pore and the access 

resistivity, respectively, which we assume are different. Indeed, ρpore varies from one 

pore shape to another depending on the scattering of ions by the pore edges and corners. 

These edge effects contribute to a higher intrinsic resistivity due to the pore shape. 

Hence, we can relate the intrinsic pore resistivity to the access resistivity through a 

single factor αpore which leads us to equation:  

ܩ ൌ ௕௨௟௞ߪ ൤
ଵ

ఈ೛೚ೝ೐

ସ௅

√ଷ௔మ
൅ ଶఢ

஼∆
൨
ିଵ

 (2) 

For the access resistance dominant model, namely “pseudo circular model”, we use a 

prefactor k to encompass all the information including pore shape, edges and scattering 

effects. 

G ൌ ௕௨௟௞ߪ ቂ
ସ௅

√ଷ௔మ
൅ ௞

௔
ቃ
ିଵ

  (3) 

As shown in Figure 5a, the α model produces the best fits (referred to section 8 in the 

SI) to experimental h-BN data. According to the minimal root-mean-square-error 

(RMSE) criteria the best fitting is obtained with αpore = 0.3, while the αpore = 0.15 gives 

an excellent agreement for the low ΔGrelative data points except for the highest point at 

the low Gopen. The small value of αpore translates into a high intrinsic resistivity of ions 
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inside the nanopore, which may originate from either low ion concentration, or low ion 

mobility inside the pore, or both. A more sophisticated approach18 is required to address 

this. The strong discrepancy with the classic model (eq1) reveals a very interesting 

nanoscopic shaping of the ion flux inside a triangular nanopore. The pseudo circular k 

model fits data less well (higher RMSE, referred to section 8 in the SI), while still being 

able to give a prefactor k of 2.5, as shown in Figure S9a.  

In contrast, pseudo circular k model fits the MoS2 data slightly better than the α model, 

shown in Figure S9b. We obtained lower k value (1.1) then in the h-BN case, which 

shows that the classic model still holds for approximately circular MoS2 nanopores. 

MoS2 data points look more dispersed comparing to h-BN dataset, which could be 

possibly due to several uncontrollable factors e.g. deviation from the perfect circular 

geometry (which would also affect the surface charges in the pore mouth), or locally 

increased L thickness due to PMMA residues. Therefore we also show the α model 

fittings that fit better for certain data points. A small discrepancy is observed if using 

the modified models, which explains the lack of the knowledge of the overestimated 

ion conductivity inside the pore.45 Compared to the small αpore value in h-BN, ions have 

much higher permeability through MoS2 nanopores, that is clearly visible for the MoS2 

points fitted with αpore = 0.8 which is close to the bulk value. In other words, the channel 

resistance plays a major role in sensing molecules in the case of h-BN nanopores, 

however it results in a smaller total conductance drop. We also examined the 

underestimated side length a of the triangular hBN nanopore (Figure 5b), which 

strongly depends on αpore. As we already mentioned, the cleanness of the 2D material 

is of high importance since the polymer residues can locally affect the thickness and 

morphology of the pore vicinity and thus influence the conductance and DNA - pore 

interaction. We tried to avoid this issue by rigorous cleaning procedure of h-BN and 

MoS2 after the transfer, however, in order to have clean polymer-free membranes the 

best would be to grow 2D material directly over the SiNx opening as it has been 

previously shown.33  

To test if we can exploit the confined geometry of h-BN nanopore to control the 

entering of molecules into the nanopore, we perform homopolymer translocation 

through a small 2.5 nm (side length) h-BN nanopore. To our surprise, we observe 

sufficient events to make statistics without using viscous medium.21 Figure 6a shows 

representative traces of polyA30 and polyC30 translocations. Statistically, we are able to 
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differentiate their chemical identities by current drop during translocation, shown in 

Figure 6b. Due to the limited bandwidth of the Axopatch current amplifier (100 k Hz), 

we speculate that detectable events originate from even more pronounced DNA-pore 

interaction due to the off-axis movement of short ssDNA molecules through the h-BN 

nanopore. At the same experimental conditions (pore size and ionic strength), 

translocations of such short ssDNA cannot be detected in MoS2 nanopores without 

employing a viscous medium. 

Top-down engineering of well-defined (in terms of size distributions, defects density 

and geometry) defects in 2D materials has a significant role in large scale 

nanoelectronics and various applications (biosensing,21, 46, 47 desalination 48 or osmotic 

power generation,49 etc.). Here we demonstrate the first example, to the best of our 

knowledge, of geometry-dependent ion scattering and therefore single-molecule 

nanopore biosensing. Owing to the well-defined triangular defects in single-layer h-BN, 

we tried to provide valuable insights of the ion transport through such geometry 

experimentally and theoretically. Furthermore, we build a better understanding of the 

roles of access region and channel region in single-molecule sensing on the basis of a 

modified conductance model with one fitting parameter αpore, namely, the relative ion 

resistivity inside the nanopore. This model reveals an anomalous process when the 

dimensions of the nanopores are reduced to the atomic scale. To design nanopores in 

2D materials in a rational way, one should understand the geometrical effect of the 

nanopore shape on the ion flux. DNA translocation through MoS2 nanopores exhibits 

an access resistance dominant process, while DNA translocation through hBN 

nanopores exhibits a channel resistance dominant process. DNA induced conductance 

drop (G) in MoS2 nanopores is superior to that in h-BN nanopores, due to the high ion 

flux through MoS2 nanopores. The role of ions in revealing the chemical identities of 

DNA, i.e, DNA sequencing,17, 19 is not completely clear. Further study is required to 

understand the fundamentals of ionic blockage-based DNA nanopore sequencing. 

 

Methods and any associated references are available in the SI. 
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The Supporting Information is available free of charge on the ACS Publications website 

at DOI: 

Additional information on experimental details (CVD growth, transfer and nanofluidic 

setup), complementary TEM observations, detailed mathematical calculations and MD 

simulations. SI movie 1 shows the formation of a triangular h-BN nanopore under 

irradiation. SI movie 2 shows the stability of a triangular h-BN nanopore under heat. 
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Figure 1. a) A schematic illustration of a triangular h-BN nanopore membrane, where single-

layer h-BN is suspended over an aperture in the SiNx membrane. The device is mounted 

between two reservoirs filled with saline solution connected to a current amplifier to apply 

transmembrane bias across the membrane. b) A bright-field optical image of as-transferred 

single-layer h-BN over the supporting SiN membrane. Although the observed optical contrast 

is weak, one can still identify the presence of m-sized triangular h-BN single layer crystals. c) 

HRTEM image (taken at 80 kV and with the sample at 400 °C) of a triangular h-BN nanopore 

with white-atom contrast, where atoms are represented by bright spots in a honeycomb-like 

arrangement. d) 2D lattice representation of the nanopore in single-layer h-BN, where B atoms 

are green and N atoms are grey. The nanopore is terminated by N-atoms. e) HRTEM image 

(taken at 80 kV and with the sample at 400 °C) of an approximately circular MoS2 nanopore 

with white-atom contrast, where atoms are represented by bright spots in a honeycomb like 

arrangement. f) Corresponding lattice representation of single-layer MoS2, where Mo atoms are 
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purple, and S atoms are yellow. The nanopore is terminated by Mo-atoms. g) and h) Contour 

plots of the charge density distribution along the triangular plate and the circular plate, 

respectively. Both plates have the same area. The area occupied by dsDNA with a diameter of 

2.4 nm is shown by the dashed circle in g) and h).   
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Figure 2. a) HRTEM image of pristine h-BN lattice. Inset: diffractogram corresponding to the 

area in a), with a secondary set of diffraction spots visible. b) HRTEM image of pristine MoS2 

lattice of the same size as in a), 8 nm ×8 nm. Inset: corresponding diffractogram with second 

and third order reflections clearly visible. c) Time-lapse HRTEM images of a triangular h-BN 

nanopore evolving in size while still maintaining its triangular shape. The elapsed time is 

marked on each image. d) Time-lapse HRTEM images of an approximately circular MoS2 

nanopore evolving in size. The elapsed time is marked on each image. e) Consecutive IVs in a 

small h-BN nanopore showing gradual growth. f) Initial conductances measured in 1 M KCl of 

all working devices in the study. g) Illustration of partial removal of atoms along the N-

terminated edge of an h-BN nanopore. h) HRTEM image corresponding to the sketch in g).  All 

the TEM images were taken at 80 kV and with the sample at 400 °C except in c) and d) which 

were taken at 80 kV and with the sample at room temperature.   
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Figure 3. a) A current trace of concatenated events in an h-BN nanopore with a 48 nS open 

pore conductance in 1 M KCl. The event detection is performed using an open source 

OpenNanopore software. b) Power density spectrum (PSD) of a short fragment of open pore 

current trace that depicts the frequency dependent noise performance of the device. The trace 

is recorded at 0 mV with ionic strength of 1 M KCl. RMS noise is ~ 35 pA at 10k lowpass 

filtering. c) Scatter plot of current drop versus dwell time of detected events at 400 mV. d) 

Representative events showing linearized smooth translocation, folded fast translocation, 

partially folded translocation and retarded translocation, respectively. e) Plausible explanations 

for retarded translocation due to sterically hindered DNA motion by the pore geometry. 
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Figure 4. Molecular dynamics simulations of a dsDNA molecule translocating through an h-

BN nanopore. a) Two mathematical boundaries perpendicular to the h-BN sheet were applied 

in our MD simulations to ensure the DNA movement through the pore along the along-axis 

(left) and off-axis (right) paths, respectively. b) Change of the center of the mass (CoM) of the 

DNA molecule with respect to simulation time. c) Snapshots taken from MD simulations of the 

along-axis (top) and off-axis (bottom) DNA translocation through the h-BN nanopore. 
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Figure 5. a) Comparison of best-fitting theoretical models with experimental data. h-BN 

experimental data is best fit to  model, where pore is the proportional factor of ion conductivity 

inside the pore. MoS2 experimental data is best fit to Pseudo Circular k model, where k is the 

corrected factor for the access resistance. More details are in the SI section 8. All translocation 

data were taken using dsDNA (1k bp, 5k bp and 48k bp). b) Dependence of calculated side 

length a of the triangular hBN nanopore on pore.  
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Figure 6. a) Homopolymer translocation in a small h-BN nanopore. PolyA30  shown in red 

and polyC30 in blue. b) Scatter plot of polyA30 and polyC30 events. 
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