31 research outputs found
Structure based inhibitor design targeting glycogen phosphorylase b. Virtual screening, synthesis, biochemical and biological assessment of novel N-acyl-β-d-glucopyranosylamines
Glycogen phosphorylase (GP) is a validated target for the development of new type 2 diabetes treatments. Exploiting the Zinc docking database, we report the in silico screening of 1888 β- D-glucopyranose-NH-CO-R putative GP inhibitors differing only in their R groups. CombiGlide and GOLD docking programs with different scoring functions were employed with the best performing methods combined in a “consensus scoring” approach to ranking of ligand binding affinities for the active site. Six selected candidates from the screening were then synthesized and their inhibitory potency was assessed both in vitro and ex vivo. Their inhibition constants’ values, in vitro, ranged from 5 to 377 µM while two of them were effective at causing inactivation of GP in rat hepatocytes at low µM concentrations. The crystal structures of GP in complex with the inhibitors were defined and provided the structural basis for their inhibitory potency and data for further structure based design of more potent inhibitors
(E)-2-(4-Arylbut-1-en-3-yn-1-yl)chromones as synthons for the synthesis of xanthone-1,2,3-triazole dyads
Xanthone-1,2,3-triazole dyads have been synthesized by two different approaches, both starting from novel (E)-2-(4-arylbut-1-en-3-yn-1-yl)chromones, prepared through a base-catalyzed aldol reaction of 2-methylchromone and arylpropargyl aldehydes. In the first method, the xanthone moiety is built by Diels-Alder reaction of the referred unsaturated chromones with N-methylmaleimide under microwave irradiation, followed by oxidation of the obtained adducts with DDQ, whereas the 1,2,3-triazole ring results from the cycloaddition reaction of the acetylene moiety with sodium azide. The second strategy first involves the cycloaddition reaction with sodium azide to provide the 1,2,3-triazole ring, followed by methylation of the triazole NH group prior to Diels-Alder reaction with N-methylmaleimide. The last step in this synthesis of novel xanthone-1,2,3-triazole dyads entails oxidation of the cycloadducts with DDQ
Auf dem Weg zu einem strukturbasierten Wirkstoffdesign fuer den Typ-2-Diabetes
Diabetes type 2 is a complex disease characterized by altered glucose
metabolism and insulin resistance. Almost half of all people with diabetes
type 2 are not aware they have this life threatening condition, as they can
show symptoms years after the onset of the disease. Glycogen phosphorylase, an
allosteric enzyme, plays a pivotal role in controlling the metabolism of
glycogen. It catalyzes the first step in the degradation of glycogen by
releasing glucose-1-phosphate from a long chain of glucose residues. As an
allosteric enzyme, the inactive T state is switched to the active R state by a
change in conformation controlled by phosphorylation of a single residue
(Ser14) by phosphorylase kinase. Phosphorylation leads to transition between
the two forms of the enzyme, called phosphorylase a and b. Glycogen
phosphorylase is a dimer composed of two identical subunits. Each subunit has
a molecular weight of 97.444 Da, consists of 842 amino acids and an essential
co-factor, pyridoxal-5´-phosphate (PLP). Various binding sites on the enzyme
are known, notably the catalytic, allosteric, new allosteric and inhibitor
sites. By means of kinetic in vitro experiments and X-ray crystallography
experiments, these binding sites were targeted by studying a large number of
glycogen phosphorylase inhibitors as potential hyperglycaemic drugs. The
essential inhibitory and binding properties of specific compounds were
analyzed in an effort to provide rationalizations for the affinities of these
compounds and to exploit the molecular interactions with the goal to design
new better inhibitors. Most of the inhibitors studied were glucose analogues
and were found to bind at the catalytic site of the enzyme but interesting
results were also found for more binding sites. A novel binding site was also
discovered and mapped out. These studies have given new insights into
fundamental structural aspects of the enzyme enhancing our understanding of
how the enzyme recognizes and specifically binds ligands, which could be of
potential therapeutic value in the treatment of diabetes type 2.Typ-2-Diabetes ist eine komplexe Stoffwechselkrankheit, die sich durch einen
veränderten Glucosestoffwechsel sowie Insulinresistenz auszeichnet. Fast die
Hälfte aller Menschen mit Typ-2-Diabetes sind sich nicht bewußt, daß sie an
dieser lebensgefährlichen Krankheit leiden, da sie oft schleichend beginnnt
und sich die ersten Symptome erst nach Jahren zeigen. Die
Glycogenphosphorylase (PYG), ein allosterisches aktiviertes Enzym, ist das
Schlüsselenzym der Glycogenolyse, die den Glycosestoffwechsel steuert. Es
katalysiert den ersten Schritt des Glycosestoffwechsels, bei dem freies
Phosphat am C-Atom 1 der Glycose angebunden wird, wobei die glykosidische
Bindung zwischen den Glycose-Molekülen aufgespalten und Glucose-1-phosphat
entsteht. PYG ist die Ursache der Konformationsänderung von der inaktiven
T-Form zur aktiven R-Form in der Phosphorylierung eines Serin-Restes (Ser14)
durch die Phosphorylase-Kinase. Die Phosphorylierung führt zum Übergang
zwischen den zwei Enzymformen, die Phosphorylase a und b genannt werden.
Glykogenphosphorylase ist ein Dimer, das aus zwei identischen Monomeren
besteht. Jedes Monomer besitzt eine molekulare Masse von 97.444 Da und besteht
aus 842 Aminosäuren, sowie dem Kofactor Pyridoxal-5´-Phosphat (PLP). Mehrere
Bindungstellen für Inhibitoren an diesem Enzym sind bekannt, insbesondere die
sogenannte katalytische, die allosterische, die neue allosterische und die
Inhibitor Bindungsstelle. In dieser Arbeit wurden mithilfe von kinetischen in
vitro Experimenten und kristallographischen Roentgenstruktur-Untersuchungen
die Bindungs- and Inhibitor-Eigenschaften der verschiedenen Bindungsstellen
des Enzyms gegenüber einer großen Anzahl ausgewählter Inhibitoren ausführlich
untersucht. Die Analyse der Ergebnisse dieser Untersuchungen ermöglichen ein
besseres Verständnis der molekularen Wechselwirkungen, mit Hinblick auf die
gezielte Entwicklung neuer hyperglykämischer Wirkstoffe mit besserem
Wirkungsgrad. Die meisten der untersuchten Inhibitoren waren Glykose-Derivate,
und die Bindung fand in der Regel an der katalytischen Bindungsstelle des
Enzyms statt. Aber auch für die anderen Bindungsstellen wurden interessante
Ergebnisse gefunden. Es wurde auch eine neue Bindungstelle im Enzym entdeckt
und charakterisiert. Die Ergebnisse dieser Arbeit vermitteln neue Erkenntnisse
über die Struktur des Enzyms, sowie über die Mechanismem der Erkennung
spezifischer Liganden und ihrer selektiven Bindung, und sind daher von
potentiellen therapeuthischem Wert für die Behandlung der Typ 2 Diabetes-
Krankheit
FR258900, a potential anti-hyperglycemic drug, binds at the allosteric site of glycogen phosphorylase
FR258900 has been discovered as a novel inhibitor of human liver glycogen phosphorylase a and proved to suppress hepatic glycogen breakdown and reduce plasma glucose concentrations in diabetic mice models. To elucidate the mechanism of inhibition, we have determined the crystal structure of the cocrystallized rabbit muscle glycogen phosphorylase b-FR258900 complex and refined it to 2.2 angstrom resolution. The structure demonstrates that the inhibitor binds at the allosteric activator site, where the physiological activator AMP binds. The contacts from FR258900 to glycogen phosphorylase are dominated by nonpolar van der Waals interactions with Gln71, Gln72, Phe196, and Val45' (from the symmetry-related subunit), and also by ionic interactions from the carboxylate groups to the three arginine residues (Arg242, Arg309, and Arg310) that form the allosteric phosphate-recognition subsite. The binding of FR258900 to the protein promotes conformational changes that stabilize an inactive T-state quaternary conformation of the enzyme. The ligand-binding mode is different from those of the potent phenoxy- phthalate and acyl urea inhibitors, previously described, illustrating the broad specificity of the allosteric site