496 research outputs found

    Selection of compressible signals from telemetry data

    Get PDF
    Sensors are deployed in all aspects of modern city infrastructure and generate vast amounts of data. Only subsets of this data, however, are relevant to individual organisations. For example, a local council may collect suspension movement from vehicles to detect pot-holes, but this data is not relevant when assessing traffic flow. Supervised feature selection aims to find the set of signals that best predict a target variable. Typical approaches use either measures of correlation or similarity, as in filter methods, or predictive power in a learned model, as in wrapper methods. In both approaches selected features often have high entropies and are not suitable for compression. This is of particular issue in the automotive domain where fast communication and archival of vehicle telemetry data is likely to be prevalent in the near future, especially with technologies such as V2V and V2X. In this paper, we adapt a popular feature selection filter method to consider the compressibility of signals being selected for use in a predictive model. In particular, we add a compression term to the Minimal Redundancy Maximal Relevance (MRMR) filter and introduce Minimal Redundancy Maximal Relevance And Compression (MRMRAC). Using MRMRAC, we then select features from the Controller Area Network (CAN) and predict each of current instantaneous fuel consumption, engine torque, vehicle speed, and gear position, using a Support Vector Machine (SVM). We show that while performance is slightly lower when compression is considered, the compressibility of the selected features is significantly improved

    Low-Mach-number turbulence in interstellar gas revealed by radio polarization gradients

    Get PDF
    The interstellar medium of the Milky Way is multi-phase, magnetized and turbulent. Turbulence in the interstellar medium produces a global cascade of random gas motions, spanning scales ranging from 100 parsecs to 1000 kilometres. Fundamental parameters of interstellar turbulence such as the sonic Mach number (the speed of sound) have been difficult to determine because observations have lacked the sensitivity and resolution to directly image the small-scale structure associated with turbulent motion. Observations of linear polarization and Faraday rotation in radio emission from the Milky Way have identified unusual polarized structures that often have no counterparts in the total radiation intensity or at other wavelengths, and whose physical significance has been unclear. Here we report that the gradient of the Stokes vector (Q,U), where Q and U are parameters describing the polarization state of radiation, provides an image of magnetized turbulence in diffuse ionized gas, manifested as a complex filamentary web of discontinuities in gas density and magnetic field. Through comparison with simulations, we demonstrate that turbulence in the warm ionized medium has a relatively low sonic Mach number, M_s <~ 2. The development of statistical tools for the analysis of polarization gradients will allow accurate determinations of the Mach number, Reynolds number and magnetic field strength in interstellar turbulence over a wide range of conditions.Comment: 5 pages, 3 figures, published in Nature on 13 Oct 201

    The relationship between structural game characteristics and gambling behavior: a population-level study

    Get PDF
    The aim of this study was to examine the relationship between the structural characteristics and gambling behavior among video lottery terminal (VLT) gamblers. The study was ecological valid, because the data consisted of actual gambling behavior registered in the participants natural gambling environment without intrusion by researchers. Online behavioral tracking data from Multix, an eight game video lottery terminal, were supplied by Norsk-Tipping (the state owned gambling company in Norway). The sample comprised the entire population of Multix gamblers (N = 31,109) who had gambled in January 2010. The individual number of bets made across games was defined as the dependent variable, reward characteristics of a game (i.e., payback percentage, hit frequency, size of winnings and size of jackpot) and bet characteristics of a game (i.e., range of betting options and availability of advanced betting options) served as the independent variables. Control variables were age and gender. Two separate cross-classified multilevel random intercepts models were used to analyze the relationship between bets made, reward characteristics and bet characteristics, where the number of bets was nested within both individuals and within games. The results show that the number of bets is positively associated with payback percentage, hit frequency, being female and age, and negatively associated with size of wins and range of available betting options. In summary, the results show that the reward characteristics and betting options explained 27 % and 15 % of the variance in the number of bets made, respectively. It is concluded that structural game characteristics affect gambling behavior. Implications of responsible gambling are discussed

    Cortical actin recovery at the immunological synapse leads to termination of lytic granule secretion in cytotoxic T lymphocytes.

    Get PDF
    CD8+ cytotoxic T lymphocytes (CTLs) eliminate virally infected cells through directed secretion of specialized lytic granules. Because a single CTL can kill multiple targets, degranulation must be tightly regulated. However, how CTLs regulate the termination of granule secretion remains unclear. Previous work demonstrated that centralized actin reduction at the immune synapse precedes degranulation. Using a combination of live confocal, total internal reflection fluorescence, and superresolution microscopy, we now show that, after granule fusion, actin recovers at the synapse and no further secretion is observed. Depolymerization of actin led to resumed granule secretion, suggesting that recovered actin acts as a barrier preventing sustained degranulation. Furthermore, RAB27a-deficient CTLs, which do not secrete cytotoxic granules, failed to recover actin at the synapse, suggesting that RAB27a-mediated granule secretion is required for actin recovery. Finally, we show that both actin clearance and recovery correlated with synaptic phosphatidylinositol 4,5-bisphosphate (PIP2) and that alterations in PIP2 at the immunological synapse regulate cortical actin in CTLs, providing a potential mechanism through which CTLs control cortical actin density. Our work provides insight into actin-related mechanisms regulating CTL secretion that may facilitate serial killing during immune responses

    Stable carbon isotopes of dissolved inorganic carbon for a zonal transect across the subpolar North Atlantic Ocean in summer 2014

    Get PDF
    The stable carbon isotope composition of dissolved inorganic carbon (δ13CDIC) in seawater was measured in samples collected during June–July 2014 in the subpolar North Atlantic. Sample collection was carried out on the RRS James Clark Ross cruise JR302, part of the “Radiatively Active Gases from the North Atlantic Region and Climate Change” (RAGNARoCC) research programme. The observed δ13CDIC values for cruise JR302 fall in a range from −0.07 to +1.95 ‰, relative to the Vienna Pee Dee Belemnite standard. From duplicate samples collected during the cruise, the 1σ precision for the 341 results is 0.08 ‰, which is similar to our previous work and other studies of this kind. We also performed a cross-over analysis using nearby historical δ13CDIC data, which indicated that there were no significant systematic offsets between our measurements and previously published results. We also included seawater reference material (RM) produced by A. G. Dickson (Scripps Institution of Oceanography, USA) in every batch of analysis, enabling us to improve upon the calibration and quality-control procedures from a previous study. The δ13CDIC is consistent within each RM batch, although its value is not certified. We report δ13CDIC values of 1.15 ± 0.03 ‰ and 1.27 ± 0.05 ‰ for batches 141 and 144 respectively. Our JR302 δ13CDIC data can be used – along with measurements of other biogeochemical variables – to constrain the processes that control DIC in the interior ocean, in particular the oceanic uptake of anthropogenic carbon dioxide and the biological carbon pump. Our δ13CDIC results are available from the British Oceanographic Data Centre – doi:10.5285/22235f1a-b7f3-687f-e053-6c86abc0c8a6

    Bayesian collective learning emerges from heuristic social learning

    Full text link
    Researchers across cognitive science, economics, and evolutionary biology have studied the ubiquitous phenomenon of social learning—the use of information about other people's decisions to make your own. Decision-making with the benefit of the accumulated knowledge of a community can result in superior decisions compared to what people can achieve alone. However, groups of people face two coupled challenges in accumulating knowledge to make good decisions: (1) aggregating information and (2) addressing an informational public goods problem known as the exploration-exploitation dilemma. Here, we show how a Bayesian social sampling model can in principle simultaneously optimally aggregate information and nearly optimally solve the exploration-exploitation dilemma. The key idea we explore is that Bayesian rationality at the level of a population can be implemented through a more simplistic heuristic social learning mechanism at the individual level. This simple individual-level behavioral rule in the context of a group of decision-makers functions as a distributed algorithm that tracks a Bayesian posterior in population-level statistics. We test this model using a large-scale dataset from an online financial trading platform

    Sampling the Faraday rotation sky of TNG50: Imprint of the magnetised circumgalactic medium around Milky Way-like galaxies

    Full text link
    Faraday rotation measure (RM) is arguably the most practical observational tracer of magnetic fields in the diffuse circumgalactic medium (CGM). We sample synthetic Faraday rotation skies of Milky Way-like galaxies in TNG50 of the IllustrisTNG project by placing an observer inside the galaxies at a solar circle-like position. Our synthetic RM grids emulate specifications of current and upcoming surveys; the NRAO VLA Sky Survey (NVSS), the Polarisation Sky Survey of the Universe's Magnetism (POSSUM), and a future Square Kilometre Array (SKA1-mid) polarisation survey. It has been suggested that magnetic fields regulate the survival of high-velocity clouds. However, there is only a small number of observational detections of magnetised clouds thus far. In the first part of the paper, we test conditions for the detection of magnetised circumgalactic clouds. Based on the synthetic RM samplings of clouds in the simulations, we predict upcoming polarimetric surveys will open opportunities for the detection of even low-mass and distant clouds. In the second part of the paper, we investigate the imprint of the CGM in the all-sky RM distribution. We test whether the RM variation produced by the CGM is correlated with global galaxy properties, such as distance to a satellite, specific star formation rate, neutral hydrogen covering fraction, and accretion rate to the supermassive black hole. We argue that the observed fluctuation in the RM measurements on scales less than 1 degree, which has been considered an indication of intergalactic magnetic fields, might in fact incorporate a significant contribution of the Milky Way CGM.Comment: 18 pages, 11 figures, Accepted to MNRA
    corecore