300 research outputs found

    New genomes, new taxa and deep questions in the eukaryotic tree of life: a meeting report on the EMBO comparative genomics conference

    Get PDF
    A report on the meeting Comparative Genomics of Eukaryotic Microorganisms: understanding the complexity of diversity. Sant Feliu de Guíxols, Spain. October 15-20, 2011

    Evolution of the MAGUK protein gene family in premetazoan lineages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell-to-cell communication is a key process in multicellular organisms. In multicellular animals, scaffolding proteins belonging to the family of membrane-associated guanylate kinases (MAGUK) are involved in the regulation and formation of cell junctions. These MAGUK proteins were believed to be exclusive to Metazoa. However, a MAGUK gene was recently identified in an EST survey of <it>Capsaspora owczarzaki</it>, an unicellular organism that branches off near the metazoan clade. To further investigate the evolutionary history of MAGUK, we have undertook a broader search for this gene family using available genomic sequences of different opisthokont taxa.</p> <p>Results</p> <p>Our survey and phylogenetic analyses show that MAGUK proteins are present not only in Metazoa, but also in the choanoflagellate <it>Monosiga brevicollis </it>and in the protist <it>Capsaspora owczarzaki</it>. However, MAGUKs are absent from fungi, amoebozoans or any other eukaryote. The repertoire of MAGUKs in Placozoa and eumetazoan taxa (Cnidaria + Bilateria) is quite similar, except for one class that is missing in <it>Trichoplax</it>, while Porifera have a simpler MAGUK repertoire. However, Vertebrata have undergone several independent duplications and exhibit two exclusive MAGUK classes. Three different MAGUK types are found in both <it>M. brevicollis </it>and <it>C. owczarzaki: DLG, MPP and MAGI</it>. Furthermore, <it>M. brevicollis </it>has suffered a lineage-specific diversification.</p> <p>Conclusions</p> <p>The diversification of the MAGUK protein gene family occurred, most probably, prior to the divergence between Metazoa+choanoflagellates and the <it>Capsaspora</it>+<it>Ministeria </it>clade. A MAGI-like, a DLG-like, and a MPP-like ancestral genes were already present in the unicellular ancestor of Metazoa, and new gene members have been incorporated through metazoan evolution within two major periods, one before the sponge-eumetazoan split and another within the vertebrate lineage. Moreover, choanoflagellates have suffered an independent MAGUK diversification. This study highlights the importance of generating enough genome data from the broadest possible taxonomic sampling, in order to fully understand the evolutionary history of major protein gene families.</p

    The Capsaspora genome reveals a complex unicellular prehistory of animals

    Get PDF
    Suga, Hiroshi et al.-- This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.To reconstruct the evolutionary origin of multicellular animals from their unicellular ancestors, the genome sequences of diverse unicellular relatives are essential. However, only the genome of the choanoflagellate Monosiga brevicollis has been reported to date. Here we completely sequence the genome of the filasterean Capsaspora owczarzaki, the closest known unicellular relative of metazoans besides choanoflagellates. Analyses of this genome alter our understanding of the molecular complexity of metazoans' unicellular ancestors showing that they had a richer repertoire of proteins involved in cell adhesion and transcriptional regulation than previously inferred only with the choanoflagellate genome. Some of these proteins were secondarily lost in choanoflagellates. In contrast, most intercellular signalling systems controlling development evolved later concomitant with the emergence of the first metazoans. We propose that the acquisition of these metazoan-specific developmental systems and the co-option of pre-existing genes drove the evolutionary transition from unicellular protists to metazoans. © 2013 Macmillan Publishers Limited. All rights reserved.H.S. was supported by the Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme. Genome sequencing, assembly and some supporting analysis was supported by grants from the National Human Genome Research Institute (HG003067-05 through HG003067-10), as were C.N., C.R., B.H. and Z.C. B.F.L. and A.J.R. acknowledge financial support through the Canadian Research Chair program. This study was supported by an ICREA contract, a European Research Council Starting Grant (ERC-2007-StG-206883) and a grant (BFU2011-23434) from the Spanish Ministry of the Economy and Competitiveness (MINECO) awarded to I.R.-T. M.V. was supported by CNRS, the Agence Nationale de la Recherche (ANR grant BLAN-0294) and the Institut Universitaire de France.Peer Reviewe

    Resistencia a la inundación prolongada de muros de adobe utilizando diferentes tipos de sobrecimiento, Chimbote 2023

    Get PDF
    El objetivo de la investigación fue Determinar la variación de la resistencia a la inundación prolongada de muros de adobe mediante la utilización de diferentes tipos de sobrecimiento. Se aplicó un diseño cuasi experimental cuantitativo, utilizando 4 muros de adobe con diferentes tipos de protección en su sobrecimiento los cuales constaron de 1 muro patrón (MP), muro de adobe con sobrecimiento concreto simple (MSC), muro de adobe con sobrecimiento de ladrillo (MSL) y muro de adobe con sobrecimiento de adobe tarrajeado (MST). Los cuales pasaron por un periodo corto de inundación de 3 días y un periodo prolongado de inundación de 17 días donde se obtuvieron datos para determinar la resistencia a la inundación de cada uno. Concluyendo que el MP, no pasó el PCI, desplomándose a los 45min de iniciado la simulación, siendo el MSL quien presento mejor resistencia a inundación prolongada, sin embargo, quien tuvo más influencia negativa en la resistencia a la compresión de las muestras de adobe extraídas al finalizar la inundación simulada

    DNA methyltransferase DNMT3A forms interaction networks with the CpG site and flanking sequence elements for efficient methylation

    Get PDF
    Specific DNA methylation at CpG and non-CpG sites is essential for chromatin regulation. The DNA methyltransferase DNMT3A interacts with target sites surrounded by variable DNA sequences with its TRD and RD loops, but the functional necessity of these interactions is unclear. We investigated CpG and non-CpG methylation in randomized sequence context using wildtype DNMT3A and several DNMT3A variants containing mutations at DNA-interacting residues. Our data revealed the flanking sequence of target sites between the -2 and up to the +8 position modulates methylation rates >100-fold. Non-CpG methylation flanking preferences were even stronger and favor C(+1). R836 and N838 in concert mediate recognition of the CpG guanine. R836 changes its conformation in a flanking sequence-dependent manner and either contacts the CpG guanine or the +1/+2 flank, thereby coupling the interaction with both sequence elements. R836 suppresses activity at CNT sites, but supports methylation of CAC substrates, the preferred target for non-CpG methylation of DNMT3A in cells. N838 helps to balance this effect and prevent the preference for C(+1) from becoming too strong . Surprisingly, we found L883 reduces DNMT3A activity despite being highly conserved in evolution. However, mutations at L883 disrupt the DNMT3A-specific DNA-interactions of the RD loop, leading to altered flanking sequence preferences. Similar effects occur after the R882H mutation in cancer cells. Our data reveal that DNMT3A forms flexible and interdependent interaction networks with the CpG guanine and flanking residues that ensures recognition of the CpG and efficient methylation of the cytosine in contexts of variable flanking sequences

    A Broad Genomic Survey Reveals Multiple Origins and Frequent Losses in the Evolution of Respiratory Hemerythrins and Hemocyanins

    Get PDF
    Abstract Hemerythrins and hemocyanins are respiratory proteins present in some of the most ecologically diverse animal lineages; however, the precise evolutionary history of their enzymatic domains (hemerythrin, hemocyanin M, and tyrosinase) is still not well understood. We survey a wide dataset of prokaryote and eukaryote genomes and RNAseq data to reconstruct the phylogenetic origins of these proteins. We identify new species with hemerythrin, hemocyanin M, and tyrosinase domains in their genomes, particularly within animals, and demonstrate that the current distribution of respiratory proteins is due to several events of lateral gene transfer and/or massive gene loss. We conclude that the last common metazoan ancestor had at least two hemerythrin domains, one hemocyanin M domain, and six tyrosinase domains. The patchy distribution of these proteins among animal lineages can be partially explained by physiological adaptations, making these genes good targets for investigations into the interplay between genomic evolution and physiological constraints

    The emergence of the brain non-CpG methylation system in vertebrates

    Get PDF
    Mammalian brains feature exceptionally high levels of non-CpG DNA methylation alongside the canonical form of CpG methylation. Non-CpG methylation plays a critical regulatory role in cognitive function, which is mediated by the binding of MeCP2, the transcriptional regulator that when mutated causes Rett syndrome. However, it is unclear whether the non-CpG neural methylation system is restricted to mammalian species with complex cognitive abilities or has deeper evolutionary origins. To test this, we investigated brain DNA methylation across 12 distantly related animal lineages, revealing that non-CpG methylation is restricted to vertebrates. We discovered that in vertebrates, non-CpG methylation is enriched within a highly conserved set of developmental genes transcriptionally repressed in adult brains, indicating that it demarcates a deeply conserved regulatory program. We also found that the writer of non-CpG methylation, DNMT3A, and the reader, MeCP2, originated at the onset of vertebrates as a result of the ancestral vertebrate whole-genome duplication. Together, we demonstrate how this novel layer of epigenetic information assembled at the root of vertebrates and gained new regulatory roles independent of the ancestral form of the canonical CpG methylation. This suggests that the emergence of non-CpG methylation may have fostered the evolution of sophisticated cognitive abilities found in the vertebrate lineage.This work was supported by the Australian Research Council (ARC) Centre of Excellence programme in Plant Energy Biology (grant no. CE140100008). R.L. was supported by a Sylvia and Charles Viertel Senior Medical Research Fellowship, ARC Future Fellowship (no. FT120100862) and Howard Hughes Medical Institute International Research Scholarship. A.d.M. was funded by an EMBO long-term fellowship (no. ALTF 144-2014). J.L.G.-S. was supported by the Spanish government (grant no. BFU2016- 74961-P) and the institutional grant Unidad de Excelencia María de Maeztu (no. MDM-2016-0687). B.V. was supported by the Biomedical Research Council of the Agency for Science, Technology and Research of Singapore. F.G. was supported by an ARC Future Fellowship (no. FT160100267). C.W.R. was supported by an NSF grant (no. IOS-1354898). J.R.E. is an investigator of the Howard Hughes Medical Institute. Genomic data was generated at the Australian Cancer Research Foundation Centre for Advanced Cancer Genomics

    Comparison of GC‐MS, HPLC‐MS and SIFT‐MS in conjunction with multivariate classification for the diagnosis of Crohn’s disease in urine

    Get PDF
    The developed world has seen an alarming increase in the incidence of gastrointestinal diseases, among the most common of which is Crohn’s disease (CD) in the young. The current “gold standard” techniques for diagnosis are often costly, time consuming, inefficient, invasive, and offer poor sensitivities and specificities. This paper compares the performances of three hyphenated instrumental techniques that have been suggested as rapid methods for the non‐invasive diagnosis of CD from urine. These techniques are gas chromatography‐mass spectrometry (GC‐MS), high performance liquid chromatography‐mass spectrometry (HPLC‐MS) and selected ion flow tube mass spectrometry (SIFT‐MS). Each of these techniques is followed by multivariate classification to provide a diagnosis based on the acquired data. The most promising results for potentially diagnosing CD was via HPLC‐MS. An overall classification accuracy of 73% (74% specificity; 73% sensitivity) was achieved for differentiating CD from healthy controls, statistically significant at 95% confidence
    corecore