1,831 research outputs found

    Explaining Local Action Groups Heterogeneity in a South Italy Region within Measure 311 Axis III Notice of LDP

    Get PDF
    Abstract Providing programmes to modernize and to sustain both agricultural and non-agricultural activities in rural areas is the main aim deriving from EU and national policies. The Local Action Groups (LAGs) implement local development strategies processing the Measures of Local Development Programme (LDP) and managing financial funds for Firms Modernization Plans (FMP) in order to increase the farm income sources. Starting from our previous work ( Fiore et al., 2014 ), here we address the problem related to the impact of some variables on the farm income; we try to analyze in more detail the influence of these variability sources and their interactions. Our case study is Apulia Region - in Southern Italy – where 25 Local Action Groups cover entirely it. This paper provides suggestions on possible heterogeneity sources between the LAGs. After a policies and literature review on the role of the LAGs for enhancing economic and sustainable competitiveness of rural areas, we present our case study. Statistical analysis and a tree classification method are carried out

    Integration of Field and Laboratory Spectral Data with Multi-Resolution Remote Sensed Imagery for Asphalt Surface Differentiation

    Get PDF
    The ability to classify asphalt surfaces is an important goal for the selection of suitable non-variant targets as pseudo-invariant targets during the calibration/validation of remotely-sensed images. In addition, the possibility to recognize different types of asphalt surfaces on the images can help optimize road network management. This paper presents a multi-resolution study to improve asphalt surface differentiation using field spectroradiometric data, laboratory analysis and remote sensing imagery. Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) airborne data and multispectral images, such as Quickbird and Ikonos, were used. From scatter plots obtained by field data using λ = 460 and 740 nm, referring to MIVIS Bands 2 and 16 and Quickbird and Ikonos Bands 1 and 4, pixels corresponding to asphalt covering were identified, and the slope of their interpolation lines, assumed as asphalt lines, was calculated. These slopes, used as threshold values in the Spectral Angle Mapper (SAM) classifier, obtained an overall accuracy of 95% for Ikonos, 98% for Quickbird and 93% for MIVIS. Laboratory investigations confirm the existence of the asphalt line also for new asphalts, too

    Different Roles of α- and β-Branch Xanthophylls in Photosystem Assembly and Photoprotection

    Get PDF
    Xanthophylls (oxygenated carotenoids) are essential components of the plant photosynthetic apparatus, where they act in photosystem assembly, light harvesting, and photoprotection. Nevertheless, the specific function of individual xanthophyll species awaits complete elucidation. In this work, we analyze the photosynthetic phenotypes of two newly isolated Arabidopsis mutants in carotenoid biosynthesis containing exclusively alpha-branch (chy1chy2lut5) or beta-branch (chy1chy2lut2) xanthophylls. Both mutants show complete lack of qE, the rapidly reversible component of nonphotochemical quenching, and high levels of photoinhibition and lipid peroxidation under photooxidative stress. Both mutants are much more photosensitive than npq1lut2, which contains high levels of viola- and neoxanthin and a higher stoichiometry of light-harvesting proteins with respect to photosystem II core complexes, suggesting that the content in light-harvesting complexes plays an important role in photoprotection. In addition, chy1chy2lut5, which has lutein as the only xanthophyll, shows unprecedented photosensitivity even in low light conditions, reduced electron transport rate, enhanced photobleaching of isolated LHCII complexes, and a selective loss of CP26 with respect to chy1chy2lut2, highlighting a specific role of beta-branch xanthophylls in photoprotection and in qE mechanism. The stronger photosystem II photoinhibition of both mutants correlates with the higher rate of singlet oxygen production from thylakoids and isolated light-harvesting complexes, whereas carotenoid composition of photosystem II core complex was not influential. In depth analysis of the mutant phenotypes suggests that alpha-branch (lutein) and beta-branch (zeaxanthin, violaxanthin, and neoxanthin) xanthophylls have distinct and complementary roles in antenna protein assembly and in the mechanisms of photoprotection

    A quadruple mutant of Arabidopsis reveals a β-carotene hydroxylation activity for LUT1/CYP97C1 and a regulatory role of xanthophylls on determination of the PSI/PSII ratio

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Xanthophylls are oxygenated carotenoids playing an essential role as structural components of the photosynthetic apparatus. Xanthophylls contribute to the assembly and stability of light-harvesting complex, to light absorbance and to photoprotection. The first step in xanthophyll biosynthesis from α- and β-carotene is the hydroxylation of ε- and β-rings, performed by both non-heme iron oxygenases (CHY1, CHY2) and P450 cytochromes (LUT1/CYP97C1, LUT5/CYP97A3). The Arabidopsis triple <it>chy1chy2lut5 </it>mutant is almost completely depleted in β-xanthophylls.</p> <p>Results</p> <p>Here we report on the quadruple <it>chy1chy2lut2lut5 </it>mutant, additionally carrying the <it>lut2 </it>mutation (affecting lycopene ε-cyclase). This genotype lacks lutein and yet it shows a compensatory increase in β-xanthophylls with respect to <it>chy1chy2lut5 </it>mutant. Mutant plants show an even stronger photosensitivity than <it>chy1chy2lut5</it>, a complete lack of qE, the rapidly reversible component of non-photochemical quenching, and a peculiar organization of the pigment binding complexes into thylakoids. Biochemical analysis reveals that the <it>chy1chy2lut2lut5 </it>mutant is depleted in Lhcb subunits and is specifically affected in Photosystem I function, showing a deficiency in PSI-LHCI supercomplexes. Moreover, by analyzing a series of single, double, triple and quadruple Arabidopsis mutants in xanthophyll biosynthesis, we show a hitherto undescribed correlation between xanthophyll levels and the PSI-PSII ratio. The decrease in the xanthophyll/carotenoid ratio causes a proportional decrease in the LHCII and PSI core levels with respect to PSII.</p> <p>Conclusions</p> <p>The physiological and biochemical phenotype of the <it>chy1chy2lut2lut5 </it>mutant shows that (i) LUT1/CYP97C1 protein reveals a major β-carotene hydroxylase activity <it>in vivo </it>when depleted in its preferred substrate α-carotene; (ii) xanthophylls are needed for normal level of Photosystem I and LHCII accumulation.</p

    Combination of the Systemin peptide with the beneficial fungus Trichoderma afroharzianum T22 improves plant defense responses against pests and diseases

    Get PDF
    Trichoderma spp. are among the most widely used plant beneficial fungi in agriculture. Its interaction with the plant triggers resistance responses by the activation of Induced Systemic Resistance mediated by Jasmonic acid and Ethylene and/or Systemic Acquired Resistance, which involves Salicylic acid, with the consequent control of a wide range of plant parasites. However, the benefit they can confer to plants may be reduced or nullified by environmental conditions or fungal ecological fitness. A novel approach to enhance their effectiveness in plant defense is to combine them with bioactive molecules including plant-derived compounds. Here, we show that plant treatment with Trichoderma afroharzianum (strain T22) and Systemin, a tomato peptide active in triggering plant defense, confers protection against the fungal pathogens Fusarium oxysporum, Botrytis cinerea and the insect pest Tuta absoluta. The observed defensive response was associated with an increase of Jasmonic acid and related metabolites and a decrease of Salicili acid

    Manipulation of β-carotene levels in tomato fruits results in increased ABA content and extended shelf-life

    Get PDF
    Tomato fruit ripening is controlled by the hormone ethylene and by a group of transcription factors, acting upstream of ethylene. During ripening, the linear carotene lycopene accumulates at the expense of cyclic carotenoids. Fruit-specific overexpression of LYCOPENE β-CYCLASE (LCYb) resulted in increased β-carotene (provitamin A) content. Unexpectedly, LCYb-overexpressing fruits also exhibited a diverse array of ripening phenotypes, including delayed softening and extended shelf life. These phenotypes were accompanied, at the biochemical level, by an increase of abscisic acid (ABA) content, decreased ethylene production, increased density of cell wall material containing linear pectins with a low degree of methylation, and a thicker cuticle with a higher content of cutin monomers and triterpenoids. The levels of several primary metabolites and phenylpropanoid compounds were also altered in the transgenic fruits, which could be attributed to delayed fruit ripening and/or to ABA. Network correlation analysis and pharmacological experiments with the ABA biosynthesis inhibitor, abamine, indicated that altered ABA levels were a direct effect of the increased β-carotene content and were in turn responsible for the extended shelf life phenotype. Thus, manipulation of -carotene levels results not only in an improvement of the nutritional value of tomato fruits, but also of their shelf life

    Who was buried with Nestor’s Cup? Macroscopic and microscopic analyses of the cremated remains from Tomb 168 (second half of the 8th century BCE, Pithekoussai, Ischia Island, Italy)

    Get PDF
    Cremation 168 from the second half of the 8th century BCE (Pithekoussai’s necropolis, Ischia Island, Italy), better known as the Tomb of Nestor’s Cup, is widely considered as one of the most intriguing discoveries in the Mediterranean Pre-Classic archaeology. A drinking cup, from which the Tomb’s name derives, bears one of the earliest surviving examples of written Greek, representing the oldest Homeric poetry ever recovered. According to previous osteological analyses, the Cup is associated with the cremated remains of a juvenile, aged approximately 10–14 years at death. Since then, a vast body of literature has attempted to explain the unique association between the exceptionality of the grave good complex, the symposiac and erotic evocation of the Nestor’s Cup inscription with the young age of the individual buried with it. This paper reconsiders previous assessments of the remains by combining gross morphology with qualitative histology and histomorphometric analyses of the burnt bone fragments. This work reveals the commingled nature of the bone assemblage, identifying for the first time, more than one human individual mixed with faunal remains. These outcomes dramatically change previous reconstructions of the cremation deposit, rewriting the answer to the question: who was buried with Nestor’s Cup
    corecore