12,663 research outputs found

    Stable chaos in fluctuation driven neural circuits

    Full text link
    We study the dynamical stability of pulse coupled networks of leaky integrate-and-fire neurons against infinitesimal and finite perturbations. In particular, we compare current versus fluctuations driven networks, the former (latter) is realized by considering purely excitatory (inhibitory) sparse neural circuits. In the excitatory case the instabilities of the system can be completely captured by an usual linear stability (Lyapunov) analysis, on the other hand the inhibitory networks can display the coexistence of linear and nonlinear instabilities. The nonlinear effects are associated to finite amplitude instabilities, which have been characterized in terms of suitable indicators. For inhibitory coupling one observes a transition from chaotic to non chaotic dynamics by decreasing the pulse width. For sufficiently fast synapses the system, despite showing an erratic evolution, is linearly stable, thus representing a prototypical example of Stable Chaos.Comment: 32 pages with 19 figures, submitted to Chaos, Solitons and Fractal

    Cell assembly dynamics of sparsely-connected inhibitory networks: a simple model for the collective activity of striatal projection neurons

    Get PDF
    Striatal projection neurons form a sparsely-connected inhibitory network, and this arrangement may be essential for the appropriate temporal organization of behavior. Here we show that a simplified, sparse inhibitory network of Leaky-Integrate-and-Fire neurons can reproduce some key features of striatal population activity, as observed in brain slices [Carrillo-Reid et al., J. Neurophysiology 99 (2008) 1435{1450]. In particular we develop a new metric to determine the conditions under which sparse inhibitory networks form anti-correlated cell assemblies with time-varying activity of individual cells. We found that under these conditions the network displays an input-specific sequence of cell assembly switching, that effectively discriminates similar inputs. Our results support the proposal [Ponzi and Wickens, PLoS Comp Biol 9 (2013) e1002954] that GABAergic connections between striatal projection neurons allow stimulus-selective, temporally-extended sequential activation of cell assemblies. Furthermore, we help to show how altered intrastriatal GABAergic signaling may produce aberrant network-level information processing in disorders such as Parkinson's and Huntington's diseases.Comment: 22 pages, 9 figure

    Learning Ground Traversability from Simulations

    Full text link
    Mobile ground robots operating on unstructured terrain must predict which areas of the environment they are able to pass in order to plan feasible paths. We address traversability estimation as a heightmap classification problem: we build a convolutional neural network that, given an image representing the heightmap of a terrain patch, predicts whether the robot will be able to traverse such patch from left to right. The classifier is trained for a specific robot model (wheeled, tracked, legged, snake-like) using simulation data on procedurally generated training terrains; the trained classifier can be applied to unseen large heightmaps to yield oriented traversability maps, and then plan traversable paths. We extensively evaluate the approach in simulation on six real-world elevation datasets, and run a real-robot validation in one indoor and one outdoor environment.Comment: Webpage: http://romarcg.xyz/traversability_estimation

    Characterization of ISP Traffic: Trends, User Habits, and Access Technology Impact

    Get PDF
    In the recent years, the research community has increased its focus on network monitoring which is seen as a key tool to understand the Internet and the Internet users. Several studies have presented a deep characterization of a particular application, or a particular network, considering the point of view of either the ISP, or the Internet user. In this paper, we take a different perspective. We focus on three European countries where we have been collecting traffic for more than a year and a half through 5 vantage points with different access technologies. This humongous amount of information allows us not only to provide precise, multiple, and quantitative measurements of "What the user do with the Internet" in each country but also to identify common/uncommon patterns and habits across different countries and nations. Considering different time scales, we start presenting the trend of application popularity; then we focus our attention to a one-month long period, and further drill into a typical daily characterization of users activity. Results depict an evolving scenario due to the consolidation of new services as Video Streaming and File Hosting and to the adoption of new P2P technologies. Despite the heterogeneity of the users, some common tendencies emerge that can be leveraged by the ISPs to improve their servic

    Exact firing time statistics of neurons driven by discrete inhibitory noise

    Get PDF
    Neurons in the intact brain receive a continuous and irregular synaptic bombardment from excitatory and inhibitory pre-synaptic neurons, which determines the firing activity of the stimulated neuron. In order to investigate the influence of inhibitory stimulation on the firing time statistics, we consider Leaky Integrate-and-Fire neurons subject to inhibitory instantaneous post-synaptic potentials. In particular, we report exact results for the firing rate, the coefficient of variation and the spike train spectrum for various synaptic weight distributions. Our results are not limited to stimulations of infinitesimal amplitude, but they apply as well to finite amplitude post-synaptic potentials, thus being able to capture the effect of rare and large spikes. The developed methods are able to reproduce also the average firing properties of heterogeneous neuronal populations.Comment: 20 pages, 8 Figures, submitted to Scientific Report

    Death and rebirth of neural activity in sparse inhibitory networks

    Get PDF
    In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of the neural activity, as expected, but it can also promote neural reactivation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neurons' death). However, the random pruning of the connections is able to reverse the action of inhibition, i.e. in a sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of the neurons (neurons' rebirth). Thus the number of firing neurons reveals a minimum at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by the neurons with higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving an analytic mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, the system passes from a perfectly regular evolution to an irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.Comment: 19 pages, 10 figures, submitted to NJ

    Load-Sharing Policies in Parallel Simulation of Agent-Based Demographic Models

    Get PDF
    Execution parallelism in agent-Based Simulation (ABS) allows to deal with complex/large-scale models. This raises the need for runtime environments able to fully exploit hardware parallelism, while jointly offering ABS-suited programming abstractions. In this paper, we target last-generation Parallel Discrete Event Simulation (PDES) platforms for multicore systems. We discuss a programming model to support both implicit (in-place access) and explicit (message passing) interactions across concurrent Logical Processes (LPs). We discuss different load-sharing policies combining event rate and implicit/explicit LPs’ interactions. We present a performance study conducted on a synthetic test case, representative of a class of agent-based models

    Algunas consideraciones sobre los efectos de la rebaja de la velocidad máxima a 110 km/h

    Get PDF
    Queremos creer que la decisión del Gobierno de rebajar temporalmente a 110 km/h la velocidad máxima en las autopistas y autovías a partir del 7 de marzo, con objeto de ahorrar combustible, es una ocurrencia fruto de la improvisación, como muchos han opinado. Esta creencia está avalada por las declaraciones del Vicepresidente Chaves, quien ha afirmado que “llevaban quince días discutiéndolas”. Normalmente, decisiones de este calado son precedidas por estudios de sus consecuencias, e incluso se llevan a cabo algunas experiencias piloto, reducidas en ámbito y breves en tiempo, para comprobar los efectos de la medida; pero ésta parece una reacción rápida al súbito encarecimiento del crudo provocado por los recientes (y aún inconclusos) movimientos sociales en el Norte de Áfric

    Recruiting from the network: discovering Twitter users who can help combat Zika epidemics

    Full text link
    Tropical diseases like \textit{Chikungunya} and \textit{Zika} have come to prominence in recent years as the cause of serious, long-lasting, population-wide health problems. In large countries like Brasil, traditional disease prevention programs led by health authorities have not been particularly effective. We explore the hypothesis that monitoring and analysis of social media content streams may effectively complement such efforts. Specifically, we aim to identify selected members of the public who are likely to be sensitive to virus combat initiatives that are organised in local communities. Focusing on Twitter and on the topic of Zika, our approach involves (i) training a classifier to select topic-relevant tweets from the Twitter feed, and (ii) discovering the top users who are actively posting relevant content about the topic. We may then recommend these users as the prime candidates for direct engagement within their community. In this short paper we describe our analytical approach and prototype architecture, discuss the challenges of dealing with noisy and sparse signal, and present encouraging preliminary results
    corecore