
Load-Sharing Policies in Parallel Simulation of
Agent-Based Demographic Models

Alessandro Pellegrini1, Cristina Montañola-Sales2, Francesco Quaglia1, and
Josep Casanovas-Garćıa2

1 DIAG, Sapienza, University of Rome
{pellegrini,quaglia}@dis.uniroma1.it

2 inLab FIB, Barcelona School of Informatics
cristina.montanola@upc.edu, josepk@fib.upc.edu

Abstract. Execution parallelism in agent-Based Simulation (ABS) al-
lows to deal with complex/large-scale models. This raises the need for
runtime environments able to fully exploit hardware parallelism, while
jointly offering ABS-suited programming abstractions. In this paper, we
target last-generation Parallel Discrete Event Simulation (PDES) plat-
forms for multicore systems. We discuss a programming model to sup-
port both implicit (in-place access) and explicit (message passing) inter-
actions across concurrent Logical Processes (LPs). We discuss different
load-sharing policies combining event rate and implicit/explicit LPs’ in-
teractions. We present a performance study conducted on a synthetic
test case, representative of a class of agent-based models.

1 Introduction

Agent-based modeling (ABM) is a simulation technique which provides abstract
representations of a scenario via a descriptive model to reproduce its evolution
through its components, including their decision-making capabilities and inter-
action patterns. An agent can be defined as an entity (theoretical, virtual or
physical) capable of acting on itself, on the environment in which it evolves, and
capable of interacting with other agents [1]. ABM is very useful in capturing in-
teractions at a macro scale coming from the way agents behave at a micro level.
This intrinsic expressive power makes it a proven solution to explore complex
real-world scenarios, such as disaster rescue [2], ancient societies resilience [3],
epidemiology [4], and economic analysis [5].

Supporting the execution of simulation models expressed using such a versa-
tile formalism is a task which requires a substantial methodological effort. In fact,
a large number of widely-adopted ABM frameworks [6–9] is intrinsically serial,
and can therefore handle a population which is significantly limited in its size. To
avoid limiting the speed and scalability of simulations, efficient parallelization
techniques must be employed. On this trend, several works aim at exploiting
the high parallelism offered by GPU computing [10, 11] or cluster-based parallel
computing [12]. More in general, Discrete Event Simulation (DES) can be con-
sidered as a mainstream formalism to describe agent-based models. The reason

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/154947224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is that agents’ interactions can be abstracted as occurring at particular time
instants—interactions having a specific duration can be mapped to a couple of
begin and end discrete events. The mapping from ABM to DES is trivial, as the
entities (agents and the environment) can be easily mapped to the general no-
tion of Logical Process (LP) proper of DES. This is an important aspect, given
the existence of a plethora of techniques globally referred to as Parallel Discrete
Event Simulation (PDES) [13], which provide protocols and mechanisms to run
complex DES models in parallel, allowing for model speedup and tractability of
more complex and large models.

In this paper, we discuss a reference programming model for agent-based
demographic models to be run on top of shared-memory PDES systems. In par-
ticular, we target the speculative paradigm incarnated by the well-known Time
Warp synchronization protocol [14], which has been recently shown to provide
scalability up to thousands or millions of CPU-cores [15]. Our goal is to give the
highest degree of freedom to the programmer, and to ensure an efficient execu-
tion of the simulation. We target symmetric-multithread PDES environments for
shared-memory multicore systems [16]. LPs are allowed to interact in a twofold
way: (i) explicitly, namely via traditional message passing, or (ii) implicitly, i.e.
relying on in-place memory accesses of their respective simulation states. This
latter interaction is based on cross-state synchronization [17] to track memory
areas accessed by threads scheduling LPs, and it has already been proven a good
facility to enhance the programmability of agent-based models [18].

Moreover, we present three load-sharing policies to optimize the binding be-
tween LPs and worker threads of the simulation platform. As discussed in [16],
this is a fundamental aspect to offer competitive performance. The binding tem-
porarily assigns computing resources (i.e., worker threads stick to certain cores)
to groups of LPs. Their composition can significantly affect the overall per-
formance due to, e.g., reduced rollback frequency. The policies are based on:
(i) density of events in the future event list of LPs; (ii) implicit interactions
among different LPs; (iii) both implicit and explicit interactions among the LPs.
Different simulative scenarios can benefit from these policies, depending on the
events’ generation pattern and/or the amount and the nature of the interactions.
A synthetic benchmark, representative of a wide range of ABM demographic
models, is used to study these policies under different workload scenarios.

The load-sharing policies can bias synchronization dynamics to let a Time
Warp system improve its performance when different portions of the simulation
model exhibit stricter interdependencies. This can improve the usage of comput-
ing resources while carrying out speculative processing of DES models, by re-
ducing negative effects of speculation, such as the rollback frequency. This is the
objective of classical load balanging/sharing approaches proposed in literature
(see, e.g., [19–21]). However, these proposal consider only explicit interactions
supported via the classical event cross-scheduling approach.

The remainder of this paper is structured as follows. Section 2 discusses re-
lated work. In Section 3 we present our programming model. Section 4 introduces
our load-sharing policies. The experimental assessment is provided in Section 5.

2 Related Work

In the literature, there are several frameworks to efficiently support agent-based
simulation, both on distributed and shared-memory systems, or on GPUs.

The MASON framework [8] pays special attention to the performance of
simulation execution, addressing computing-intensive models (i.e., large scenar-
ios with many agents), along with portability and reproducibility of the re-
sults across different hardware architectures. A parallel/distributed version (D-
MASON) has been presented in [12], which relies on time-stepped synchroniza-
tion and on the master/slave paradigm. We similarly address the performance of
agent-based simulation execution, yet we do this for the case of speculative asyn-
chronous (non-time-stepped) PDES, reducing the negative effects of optimism
by finding proper binding between LPs and threads.

AnyLogic [22] is a commercial multi-method general-purpose simulation mod-
eling and execution framework, offering at the same time the possibility to sup-
port discrete-event, system dynamics, and agent-based simulation. The simula-
tion model developer can rely on graphical modeling languages to implement the
simulation models, along with Java code. Differently from this framework, we
target C technology and explicitly provide self-tuning capabilities in the load-
sharing policies, which allow to optimize at runtime the simulation performance.

FLAME [23] is a simulation framework targeting large, complex models with
large agent populations to be run on HPC platforms using MPI and OpenMP.
The counterpart FLAME GPU [24] targets 3D simulations of complex systems
with a multi-massive number of agents on GPU devices. We keep the ability to
deal with large amount of agents (bound by the simulation state size), yet we
rely on traditional CPU-based execution of the simulation model.

In the context of PDES, several works have studied the problem of find-
ing the best binding between LPs and worker threads—see, e.g., [16, 25, 26, 21,
27]. Nevertheless, none of these works has ever used information related to the
interaction between LPs to explicitly reduce the (possible) negative effects of
optimistic simulation runs.

The proposal in [28], still targeting multi-core architectures as we do, pro-
poses a technique called Dynamic Local Time Window Estimates (DLTWE), in
which each processor communicates time estimates of its next inter-processor
event to its neighbors, which use the estimates as bounds for advancement.
The proposal specifically targets spatial simulations, in which different (close)
sub-volumes could be interested by a rollback operation. A selective rollback
function is described, which allows to reduce the effects of rollbacks at LPs
managing “close” entities. Contrarily, we do not impose any topology or prede-
termined relation across the LPs, which is an implicit outcome thanks to the
different supported programming model (based on in-place state access every-
where). Moreover, we limit the effect of a rollback too for applications exploiting
such a programming model by explicitly avoiding causal inconsistencies across
LPs that are dynamically granulated together.

Simulation state of LPx

.

.

.

Attributes of LPx

.

.

.

Primarily-hosted agents

Secondarily-hosted agents Pointer to Agentx record

Attributes of Agenty

Simulation state of LPy

.

.

.

Attributes of LPy

.

.

.

Primarily-hosted agents

Secondarily-hosted agents

Attributes of Agentx Attributes of Agenty

Agent Migration: When Agenty migrates from LPx to LPy, its record is unchained from the primarily-hosted chain.

 An event keeping the agent is sent to LPy, which installs a copy of the record in its primary chain.

 The old record at LPx is released.

Agent Sharing: LPy sends a pointer to the record of Agentx which is kept in LPx's primary chain.

 LPx stores the pointer in its secondary chain. Access can be performed concurrently by both LPs.

 The correctness of this scenario is ensured by ECS.

Fig. 1. Cross state-enabled programming model for agent-based demographic models.

3 Reference Programming Model

In the most general case, the core element of a demographic model is the life
course of individuals, while their behaviour and their decisions strongly depend
on the environment they act into [29]. ABM is interesting for demography due to
its ability to generate personal-event histories and to produce estimates of the full
distribution outcome [30]. Only two elements are required by any demographic
agent-based model: the environment and the agents (with their interactions).
Borrowing from the discussion in [31], we map environment portions or places
to LPs, and agents to specific data structures managed by LPs’ handlers.

Indeed, an agent can be described in terms of individual-specific explanatory
variables. Changes in its state can be expressed as transitions (implemented
within the LPs’ event handlers) on some variables. In this way, different LPs
can manipulate the same agent differently, giving more expressive power at no
additional cost. The movement of an agent from a portion of space to another
can be encoded by having the origin LP schedule an event carrying the agent’s
data structure(s) at the destination LP. This LP can then register the agent’s
records within its simulation state. A LP might implement any logic within its
event handlers, and can therefore access any agent currently registered at it.

Nothing prevents multiple LPs from keeping in their states the records of the
same agents. This reflects a scenario where LPs represent non-disjoint places,
e.g., one LP might logically represent a city, while another LP might represent
a workplace within it. Both LPs can manage a subset of the state transitions
which involve an agent, and this organization clearly simplifies the implementa-
tion of the model, allowing for reuse/interoperability of different models. In this
scenario, cross-state synchronization [17] becomes a mandatory aspect to deal
with the correctness of the parallel simulation run.

By relying on cross-state synchronization, we can schematize our program-
ming model for demography as in Figure 1. Each LP can describe a geographical

region or a specific place (e.g., a workplace or a hospital) within one of the ge-
ographical regions. Both kinds of LPs keep two lists of records, a primary list
and a secondary list. The primary list keeps track of the agents currently in the
region represented by the LP, and therefore the LP’s handlers can manipulate
their attributes. Each agent is identified by a system-wide unique id, so that a
LP’s hanlder can manipulate subsets of the currently-hosted agents. Similarly,
the secondary list keeps track of the agents which can be managed (in terms of
record update) by the LP, yet are not primarily hosted at the region. This is a
list of pointers to some agent records kept in the primary list of any other LP in
the system. In this way, multiple LPs share a portion of their simulation state,
and concurrently access the records of the agents of interest for the execution of
the model, decoupling different logical aspects of the model. For example, if a LP
represents a workplace, all agents working there could have their salary updated
via a simple chain traversal—this operation is independent of any other action
involving the agents, and is thus realized on a separate module of the model.

By this organization of the LPs’ states, we envisage two different operations
on agents which are of general usability for demographic agent-based models:

– Agent sharing : if a LP wants to share an agent with other LPs, it simply
sends an event carrying a pointer to the record chained to its primary list.

– Agent migration: when an agent physically moves from one spatial region to
another, the source LP creates a copy of the agent’s record into a message,
which is scheduled to the destination LP with a model-specific timestamp
increment. The record currently chained to the origin LP’s primary list is
detached and free()’d1, and all the LPs keeping a pointer to the record are
instructed via message passing to removed pointers from the secondary list.

If two agents want to interact, this is likely due to them being registered at
the same LP (or shared across the same LPs), and their records can be easily
retrieved from LPs’ lists. In the more unlikely case that two agents interact re-
motely (e.g., they interact due to some kinship relation), this can be supported
via traditional message passing. To this end, the source agent (run by its host-
ing LP) can keep the id of the destination LP within its record. The model
should only ensure that when an agent migrates to another region, it informs
(via message passing) the interested agents of their migration.

4 Load-Sharing Policies

4.1 Policy 1—Future Event List and GVT Advancement

The first policy we propose relies on a consensus algorithm to maximize the
global event rate (namely, the global amount of committed simulation events per
wall-clock-time unit) across all the worker threads. We consider the availability
of C cores, and complying with the organization in [16], we assume K worker

1 This pattern is compliant with traditional PDES environments, in which the virtual
address of a buffer identifies its ownership with respect to a certain LP.

threads (K ≤ C) are available for event processing. To determine what LPs
should be bound to the available worker threads, we follow these steps:
Step 1. Each worker thread ki, i ∈ [1,K], hosts a set of LPs with cardinality
numLP ki . We associate each LPl, l ∈ [1, numLP ki], with a workload factor Ll,
defined as the wall-clock time needed to advance LPl’s local virtual time of one
unit. The factor Ll is computed considering the number of events registered into
the LP’s future event list which fall within a distance in the future equal to the
last GVT advancement normalized to the local virtual time advancement they
would produce, weighted by the average CPU time for event processing by LPl,
that is:

Ll =
ql · δl

LV T ql
l − LV T 1

l

(1)

where ql is the amount of events falling within the interval of interest, LV T i
l is

the timestamp of the i-th pending event in the queue, and δl is the average CPU
time requirement for event processing by LPj . Among the above parameters, ql
and LV T i

l are known in advance, since they depend on the state of the input
queue. Instead, δl is unknown since it expresses the average cost for events that
have not yet been processed. Anyhow, it can be approximated by an exponential
mean over already-processed events.
Step 2. The worker thread ki computes its total workload as:

Lki =

numLPki∑
l=1

Ll (2)

Step 3. The actual bindings are determined, accounting for the highest workload
factor found among LPs. This is done in several sub-steps based on knapsack :
– Workload factors for the LPs hosted by ki are non-increasingly ordered (let

us call them in this order as Ll1 , Ll2 , . . . , LlH);
– The highest factor Ll1 is taken as the reference value, and the knapsack

formed by LPl1 is defined;
– The other knapsacks are built by aggregating the remaining LPs according

to a 0-1 one-dimensional multiple knapsack problem-solving algorithm. This
problem is NP-hard, whose integral solution is non-trivial. So we rely on
a greedy approximation approach [32], considering K knapsacks. At each
step of the algorithm, ∀i ∈ [2, H], the k-th knapsack’s size is updated as
Sk = Sk + Lli , and it is considered full if the size constraint is violated. We
then switch to the k+ 1 knapsack, and begin to fill it. Once all K knapsacks
are full, the remainder LPs (if any) are distributed in a round-robin fashion.

4.2 Policy 2—Implicit Synchronization

The memory management architecture in [17], allows to materialize cross-state
accesses by leveraging a Linux kernel module which installs sibling page tables in
x86 MMU registers. In this way, whenever a LP accesses a memory page bound
to another LP, we can determine a cross-LP relation which we use to rebind

Algorithm 1 LP Grouping
1: procedure Regroup(LpGroup GLP, int LPid, int group)
2: if GLP[LPid].group 6=⊥ then
3: return GLP[LPid].group
4: end if
5: if group 6=⊥ then
6: GLP[LPid].group ← group
7: else
8: GLP[LPid].group ← LPid
9: end if

10: if GLP[LPid].MaxDep 6=⊥ then
11: GLP[LPid].group = Regroup(GLP, GLP[LPid].MaxDep, GLP[LPid].group)
12: end if
13: return GLP[LPid].group

14: end procedure

LPs to worker threads. We rely on the LpDependencies matrix, which gets
incremented at elements [i, j] and [j, i] whenever a cross-state access between
LPi and LPj is detected. We map LpDependencies to an incidence matrix of a
directed multigraph G = (V,E) where the set of vertices V keeps the identifiers
of the LPs in the system, and the set of edges E is defined as E = {{i, j} : i, j ∈
V ∧ LpDependencies[i, j] > 0}. Before converting it to an incidence matrix,
we filter the values to reduce the possibility of capturing spurious cross-state
relations, by using a threshold τdep. We thus build a cross-state dependency
multigraph G = {{i, j} : i, j ∈ V ∧ LpDependencies[i, j] ≥ τdep} and derive its
incidence matrix IMG. If no edge exists in G between two LPs LPi and LPj ,
then the (i, j) IMG element’s value is set to the special value ⊥. Periodically,
IMG is accessed to identify the highest cross-state access counter:

MaxDepk = max
i∈[0,numLPs−1],i6=k

{IMG[k, i]} (3)

where ⊥ is assumed to be the lowest value in the domain where the maximum is
searched. These indices are used to build a vector of tuples, each one structured
as 〈MaxDepk, group〉 ∀k ∈ [0, numLPs − 1]. Initially, the value group for all
the elements is set to ⊥, telling that LPk has its highest dependency counter set
to MaxDepk and belongs to the special group ⊥ (no group).

This construction transforms the multigraph G into another oriented multi-
graph Ḡ such that V̄ ≡ V , but if {i, j} ∈ V̄ , then {i, k} 6∈ V̄ ∀k 6= j. This
means that every node i ∈ V̄ has at most one edge connecting it to another
node j ∈ V̄ , with i 6= j, and by construction j = MaxDepi.

A graph visiting algorithm on Ḡ is then used to group LPs together. We
iterate over all indices k ∈ [0, numLPs − 1], and for each value k we execute
the recursive function Regroup(LpGroup, k, ⊥) shown in Algorithm 1. Its goal
is to determine whether the selected LP already belongs to a group or, in the
negative case, either the target LP is aggregated into the passed group (line 6)
or a new group is created (line 8). In the positive case, only the group the LP
belongs to is returned (line 3). Both cases are associated with tentative groups,
which could be later confirmed or discarded. If the LP was associated with a
tentative group, a recursive call is issued to Regroup() (line 11), selecting as

the target LP the MaxDep one of the current LP, and passing the ID of the
group which the current LP belongs to. The group ID of the current LP is then
updated with the return value of this call, which is done to backwards propagate
the creation of new groups or the agglomeration to existing ones (line 13).

Once the graph visiting algorithm is completed, we apply Policy 1, taking into
account the groups of LPs rather than single LPs. We note that in the scenario
where no dependencies at all are detected, Algorithm 1 creates numLPs groups,
each one keeping a single LP. In this case, Policy 2 boils down to Policy 1.

4.3 Policy 3—Implicit and Explicit Synchronization

To account for both implicit and explicit synchronization, we must optimize
towards multiple variables. For each LPi of the system, we rely on a set of coun-
ters, identifying the volume of implicit and explicit interactions. Particularly,
each LPi is associated with a tuple 〈I0, I1, . . . , InumLP−1, E0, E1, . . . EnumLP−1〉
where each component Ij is the amount of implicit accesses from LPi to LPj—
measured in terms of cross-state synchronizations. Each Ej is the amount of
events scheduled from LPi to LPj . For the case i = j, we arbitrarily set the
value Ii to the number of events executed by LPi, under the assumption that
the likelihood that one LP accesses its own state is very high. This decision
prevents the introduction of any bias in the general algorithm which is used for
load-sharing.

Each tuple 〈I0, I1, . . . , InumLP−1, E0, E1, . . . EnumLP−1〉 can be regarded as
a point in an n-dimensional space, referred to as the LPs interaction space.
The third policy aims at identifying a set of clusters of LPs with high inter-
dependence. Indeed, if two LPs have similar coordinates in the n-dimensional
space, they are very likely to interact. In particular, we want to identify K
clusters, where K is the number of active worker threads. To this end, we rely
on a variant of the Lloyd’s solution [33] to the problem of finding evenly-sized
Voronoi regions in an Euclidean space. This variant, known as the k-medoids
clustering algorithm [34], tries to partition the available numLP −1 LPs into K
different clusters trying to minimize the effect of outliers. Specifically, if we call i
and j the n-dimensional vectors associated with the coordinates of LPi and LPj

in the n-dimensional interaction space, we define the distance between the two
LPs as the Manhattan distance d(i, j) = ‖i − j‖ =

∑n
i=1 |ii − ji|. This distance

is used in the objective function of the algorithm, which is defined as:

D =

K∑
k=1

∑
i∈Ck

∑
j∈Ck

di,j (4)

where Ck is the set of all LPs in cluster k. When the load-sharing resource
allocation is recomputed, an initial LP is selected having the shortest distance
to any other LP in the n-dimensional space—it is approximately in the center.
Then, other k − 1 LPs are selected so that they decrease the value of D as
much as possible. In a second phase, possible alternatives for the k objects are
selected, by picking an unselected LP and trying to exchange it with one of the k

objects. The choice is kept if and only if it produces a decrease in the value of D.
This step is repeated until no exchange can be found that lowers the objective
function’s value. We anyhow impose a maximum number of refinement steps,
which can be tuned at compile time.

The selected k LPs define the centroids of the k Voronoi regions of the n-
dimensional interaction space. The LPs belonging to each group can then be
picked minimizing the distance d(i, j) with respect to the centroids.

5 Experimental Results

To study our policies, we rely on a synthetic benchmark which is representative of
a wide range of agent-based models. Upon simulation startup, a pre-determined
number of LPs acting as non-disjoint hexagonal cell regions is set up. They
implement event handlers which, with a certain probability, operate changes on
the hosted agents, execute an agent migration, or schedule to any other LP an
operative event, i.e. an event associated with an operation correlating two agents
hosted by different LPs.

As described, we map agents to data structures. An agent is described by
a bitmask of attributes and a payload which is updated by the event handler
implemented at any LP. In particular, we define three operations:

– State-machine update: with a certain probability psmu, a bit in the bitmask
is negated, mimicking a state transition;

– Memory update: with a certain probability pmu, a portion of the payload of
the agent’s structure is written with random data, mimicking the update of
less-concise metadata describing the agent;

– Remote agent interaction: with a certain probability prai, a random LP is
scheduled an event piggybacking random data. Upon its receipt, a random
agent is picked and the content of the event is copied into its state, mimicking
kinship or family interactions with relatives who live in separate places.

Upon simulation startup, each LP instantiates the same number of agents, to
have an even distribution, and links them to the primary list. Each LP schedules
to itself separate chains of events, exponentially distributed, which trigger the
state-machine and memory update operations. Once one of these operations is
triggered, the LP scans the whole list of records so as to randomly select agents
which undergo the corresponding operation. After a certain residence time, an
agent is migrated towards one remote region, and a new agent migration event
is scheduled, so that its lifetime within a certain region is pre-determined. Upon
installation, with a certain probability psh the agent is shared (via message
passing) with another region as well.

We have varied the probability p telling whether two LPs interact via message
passing—p = 0.5 shows an even amount of in-place accesses vs message passing.
We set psmu = 0.3, pmu = 0.5, prai = 0.2, and psh = 0.1, we use 1024 regions,
with a population of 100.000 agents, and run the experiments on ROOT-Sim [16]
on a 32-cores NUMA machine with 32 GB of RAM. The payload buffer of an

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

RR P1 P2 P3E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

(a) p = 0.25

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

RR P1 P2 P3E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

(b) p = 0.50

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

RR P1 P2 P3E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

(c) p = 0.75

Fig. 2. Experimental results with different in-place state access probability p.

agent is 16KB, for a total of ∼1.6GB of live simulation state (i.e., without con-
sidering checkpoints). Additionally, we compare to an “agnostic” load sharing,
where LPs are bound to threads in a round robin fashion (RR in the plots). By
the results in Figure 2, we can see that when the amount of message-passing
interactions is non-minimal (Figure 2(c)), Policy 3 offers the better results. In
fact, this is the only policy which accounts for both implicit and explicit interac-
tion among LPs. On the other hand, when the vast majority of the interactions
rely on in-place accesses (Figure 2(a)), Policy 2 gives better results, although in
a slightly reduced way since the graph visiting algorithm is not able to capture
a large amount of mutual dependencies. Policy 1 is interaction-agnostic, and is
not therefore able to compete with the other two policies.

In the best case, there is a performance speedup of around 30% with respect
to the RR policy. This evidences that load-sharing policies are fundamental to
offer a competitive simulation when run on shared-memory systems.

6 Conclusions

In this paper we have discussed a parallel ABM programming model for demog-
raphy, using the DES formalism. Additionally, we have proposed three different
policies to support efficient load balancing under different workloads. By our re-
sults, we showed how load balancing is fundamental when running simulations on
shared-memory machines. Moreover, policies which explicitly account for (im-
plicit and explicit) interactions can find a binding between LPs and threads
which allows to better capture the parallelism degree of the model, and thus
increase performance.

References

1. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and
development. Autonomous agents and multi-agent systems 1(1) (1998) 7–38

2. Takahashi, T., Tadokoro, S., Ohta, M., Ito, N.: Agent based approach in disaster
rescue simulation-From test-bed of multiagent system to practical application. In:
Robot Soccer World Cup V. RoboCup, Springer-Verlag (2002) 102–111

3. Balbo, A.L., Rubio-Campillo, X., Rondelli, B., Ramı́rex, M., Lancelotti, C., Tor-
rano, A., Salpeteur, M., Lipovetzky, N., Reyes-Garćıa, V., Montañola-Sales, C.,
Madella, M.: Agent-based simulation of Holocene monsoon precipitation patterns
and hunter-gatherer population dynamics in semi-arid environments. Journal of
Archaeological Method and Theory 21(2) (2014) 426–446

4. Prats, C., Montañola-Sales, C., Gilabert-Navarro, J.F., Valls, J., Casanovas-Garcia,
J., Vilaplana, C., Cardona, P.J., López, D.: Individual-based modeling of tuber-
culosis in a user-friendly interface: Understanding the epidemiological role of pop-
ulation heterogeneity in a city. Frontiers in Microbiology 6(1564) (jan 2016)

5. Page, S.E.: Agent-based models. In Durlauf, S.N., Blume, L.E., eds.: The New
Palgrave Dictionary of Economics. Nature Publishing Group (2008) 47–52

6. Tisue, S., Wilensky, U.: Netlogo: A simple environment for modeling complex-
ity. In: Proceedings of the International Conference on Complex Systems. ICCS,
NECSI (2004) 1–10

7. Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The SWARM simulation
system: A toolkit for building multi-agent simulations. Technical report, Santa Fe
Institute (1996)

8. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: A multi-
agent simulation environment. Simulation 81(7) (2005) 517–527

9. North, M.J., Howe, T.R., Collier, N.T., Vos, J.R., M.J. North, T.R. Howe, N.T.
Collier, J.V.: The Repast simphony runtime system. In: Proceedings of the Agent
2005 Conference on Generative Social Processes, Models and Mechanisms, Argonne
National Laboratory (2005) 151–158

10. Lysenko, M., D’Souza, R.M.: A framework for megascale agent based model sim-
ulations on the GPU. Journal of Artificial Societies and Social Simulation 11(4)
(2008) 10

11. Park, H., Han, J.: Fast rendering of large crowds using GPU. In: Entertainment
Computing. Springer Berlin Heidelberg (2008) 197–202

12. Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo, C.:
A framework for distributing agent-based simulations. In Alexander, M., D’Ambra,
P., Belloum, A., Bosilca, G., Cannataro, M., Danelutto, M., Martino, B., Gerndt,
M., Jeannot, E., Namyst, R., Roman, J., Scott, S.L., Traff, J.L., Vallée, G., Wei-
dendorfer, J., eds.: Proceedings of Euro-Par 2011: Parallel Processing Workshops.
Lecture Notes in Computer Science, Springer Berlin Heidelberg (2012) 460–470

13. Fujimoto, R.M.: Parallel discrete event simulation. Communications of the ACM
33(10) (1990) 30–53

14. Jefferson, D.R.: Virtual Time. ACM Transactions on Programming Languages
and System 7(3) (1985) 404–425

15. Barnes, P.D., Carothers, C.D., Jefferson, D.R., LaPre, J.M.: Warp speed: executing
time warp on 1,966,080 cores. In: Proceedings of the 2013 ACM SIGSIM conference
on Principles of advanced discrete simulation - SIGSIM-PADS ’13. (2013) 327

16. Vitali, R., Pellegrini, A., Quaglia, F.: Towards symmetric multi-threaded optimistic
simulation kernels. In: Proceedings of the 26th Workshop on Principles of Advanced
and Distributed Simulation. PADS, IEEE Computer Society (jul 2012) 211–220

17. Pellegrini, A., Quaglia, F.: Transparent multi-core speculative parallelization of
DES models with event and cross-state dependencies. In: Proceedings of the 2014
ACM/SIGSIM Conference on Principles of Advanced Discrete Simulation. PADS,
ACM Press (2014) 105–116

18. Pellegrini, A., Quaglia, F.: Programmability and performance of parallel ECS-
based simulation of multi-agent exploration models. In: Proceedings of Euro-Par
2014: Parallel Processing Wor, Porto, Portugal, LNCS, Springer-Verlag (2014)

19. Carothers, C.D., Fujimoto, R.M.: Efficient execution of Time Warp programs on
heterogeneous, NOW platforms. IEEE Transactions on Parallel and Distributed
Systems 11(3) (2000) 299–317

20. Glazer, D.W., Tropper, C.: On process migration and load balancing in Time Warp.
IEEE Transactions on Parallel and Distributed Systems 4(3) (1993) 318–327

21. Vitali, R., Pellegrini, A., Quaglia, F.: Load sharing for optimistic parallel sim-
ulations on multi core machines. ACM SIGMETRICS Performance Evaluation
Review 40(3) (jan 2012) 2–11

22. Karpov, Y.G.: AnyLogic — a New Generation Professional Simulation Tool. In:
Proceedings of the 6th International Congress on Mathematical Modeling. MATH-
MOD (2004)

23. Holcombe, M., Coakley, S., Smallwood, R.: A general framework for agent-based
modelling of complex systems. In: Proceedings of the 2006 European conference
on complex systems, European Complex Systems Society Paris, France (2006)

24. Richmond, P., Romano, D.: Agent based gpu, a real-time 3d simulation and inter-
active visualisation framework for massive agent based modelling on the gpu. In:
Proceedings International Workshop on Supervisualisation. (2008)

25. Vitali, R., Pellegrini, A., Quaglia, F.: Assessing load sharing within optimistic
simulation platforms. In: Proceedings of the 2012 Winter Simulation Conference.
WSC, Society for Computer Simulation (2012)

26. Vitali, R., Pellegrini, A., Quaglia, F.: A Load Sharing Architecture for Opti-
mistic Simulations on Multi-Core Machines. In: Proceedings of the 19th Interna-
tional Conference on High Performance Computing. HiPC, IEEE Computer Soci-
ety (2012) 1–10

27. Marziale, N., Nobilia, F., Pellegrini, A., Quaglia, F.: Granular Time Warp objects.
In: Proceedings of the 2016 ACM/SIGSIM Conference on Principles of Advanced
Discrete Simulation. PADS, New York, New York, USA, ACM Press (2016) 57–68

28. Bauer, P., Lindén, J., Engblom, S., Jonsson, B.: Efficient Inter-Process Synchro-
nization for Parallel Discrete Event Simulation on Multicores. In: Proceedings of
the 3rd ACM Conference on SIGSIM-Principles of Advanced Discrete Simulation
- SIGSIM-PADS ’15, New York, New York, USA, ACM Press (2015) 183–194

29. Andrew, H.: Demographic Methods. Routledge (1998)
30. Montañola-Sales, C., Casanovas-Garcia, J., Kaplan-Marcusán, A., Cela-Esṕın,

J.M.: Demographic agent-based simulation of Gambians immigrants in Spain. In:
Proceedings of the 10th Social Simulation Conference, European Social Simulation
Association (2014)

31. Cingolani, D., Pellegrini, A., Quaglia, F.: RAMSES: Reversibility-based agent
modeling and simulation environment with speculation support. In Hunold, S.,
Costan, A., Ginenéz, D., Iosup, A., Ricci, L., Gómez Requena, M.E., Scarano, V.,
Varbanescu, A.L., Scott, S.L., Lankes, S., Weidendorfer, J., Alexander, M., eds.:
Proceedings of Euro-Par 2015: Parallel Processing Workshops. PADABS. LNCS,
Springer-Verlag (2015) 466–478

32. Dantzig, G.B.: Discrete-variable extremum problems. Operational Research (5)
(1957)

33. Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information
Theory 28(2) (mar 1982) 129–137

34. Kaufman, L., Rousseeuw, P.J.: Clustering by means of medoids. Statistical Data
Analysis Based on the L1-Norm and Related Methods (1987) 405–416416

