10 research outputs found

    Exosomes as drug delivery vehicles for Parkinson's disease therapy

    Get PDF
    Exosomes are naturally occurring nanosized vesicles that have attracted considerable attention as drug delivery vehicles in the past few years. Exosomes are comprised of natural lipid bilayers with the abundance of adhesive proteins that readily interact with cellular membranes. We posit that exosomes secreted by monocytes and macrophages can provide an unprecedented opportunity to avoid entrapment in mononuclear phagocytes (as a part of the host immune system), and at the same time enhance delivery of incorporated drugs to target cells ultimately increasing drug therapeutic efficacy. In light of this, we developed a new exosomal-based delivery system for a potent antioxidant, catalase, to treat Parkinsonā€™s disease (PD). Catalase was loaded into exosomes ex vivo using different methods: the incubation at room temperature, permeabilization with saponin, freeze-thaw cycles, sonication, or extrusion. The size of the obtained catalase-loaded exosomes (exoCAT) was in the range of 100 - 200 nm. A reformation of exosomes upon sonication and extrusion, or permeabilization with saponin resulted in high loading efficiency, sustained release, and catalase preservation against proteases degradation. Exosomes were readily taken up by neuronal cells in vitro. A considerable amount of exosomes was detected in PD mouse brain following intranasal administration. ExoCAT provided significant neuroprotective effects in in vitro and in vivo models of PD. Overall, exosome-based catalase formulations have a potential to be a versatile strategy to treat inflammatory and neurodegenerative disorders

    Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells

    Get PDF
    AbstractExosomes have recently come into focus as "natural nanoparticles" for use as drug delivery vehicles. Our objective was to assess the feasibility of an exosome-based drug delivery platform for a potent chemotherapeutic agent, paclitaxel (PTX), to treat MDR cancer. Herein, we developed different methods of loading exosomes released by macrophages with PTX (exoPTX), and characterized their size, stability, drug release, and in vitro antitumor efficacy. Reformation of the exosomal membrane upon sonication resulted in high loading efficiency and sustained drug release. Importantly, incorporation of PTX into exosomes increased cytotoxicity more than 50 times in drug resistant MDCKMDR1 (Pgp+) cells. Next, our studies demonstrated a nearly complete co-localization of airway-delivered exosomes with cancer cells in a model of murine Lewis lung carcinoma pulmonary metastases, and a potent anticancer effect in this mouse model. We conclude that exoPTX holds significant potential for the delivery of various chemotherapeutics to treat drug resistant cancers.From the Clinical EditorExosomes are membrane-derived natural vesicles of ~40 - 200 nm size. They have been under extensive research as novel drug delivery vehicles. In this article, the authors developed exosome-based system to carry formulation of PTX and showed efficacy in the treatment of multi-drug resistant cancer cells. This novel system may be further developed to carry other chemotherapeutic agents in the future

    EGFR Targeted Theranostic Nanoemulsion for Image-Guided Ovarian Cancer Therapy

    Get PDF
    Platinum-based therapies are the first line treatments for most types of cancer including ovarian cancer. However, their use is associated with dose-limiting toxicities and resistance. We report initial translational studies of a theranostic nanoemulsion loaded with a cisplatin derivative, myrisplatin and pro-apoptotic agent, C6-ceramide

    Design, Synthesis, and Characterization of Folate-Targeted Platinum-Loaded Theranostic Nanoemulsions for Therapy and Imaging of Ovarian Cancer

    No full text
    Platinum (Pt) based chemotherapy is widely used to treat many types of cancer. Pt therapy faces challenges such as dose limiting toxicities, cumulative side effects, and multidrug resistance. Nanoemulsions (NEs) have tremendous potential in overcoming these challenges as they can be designed to improve circulation time, limit non-disease tissue uptake, and enhance tumor uptake by surface modification. We designed novel synthesis of three difattyacid platins, dimyrisplatin, dipalmiplatin, and distearyplatin, suitable for encapsulation in the oil core of an NE. The dimyrisplatin, dipalmiplatin, and distearyplatin were synthesized, characterized, and loaded into the oil core of our NEs, NMI-350, NMI-351, and NMI-352 respectively. Sequestration of the difattyacid platins was accomplished through high energy microfluidization. To target the NE, FA-PEG<sub>3400</sub>-DSPE was incorporated into the surface during microfluidization. The FA-NEs selectively bind the folate receptor Ī± (FR-Ī±) and utilize receptor mediated endocytosis to deliver Pt past cell surface resistance mechanisms. FR-Ī± is overexpressed in a number of oncological conditions including ovarian cancer. The difattyacid platins, lipidated Gd-DTPA, and lipidated folate were characterized by nuclear magnetic resonance (NMR), mass spectrometry (MS), and elemental analysis. NEs were synthesized using high shear microfluidization process and characterized for size, zeta-potential, and loading efficiency. <i>In vitro</i> cytotoxicity was determined using KB-WT (Pt-sensitive) and KBCR-1000 (Pt-resistant) cancer cells and measured by MTT assay. Pharmacokinetic profiles were studied in CD-1 mice. NEs loaded with difattyacid platins are highly stable and had size distribution in the range of āˆ¼120 to 150 nm with low PDI. Cytotoxicity data indicates the longer the fatty acid chains, the less potent the NEs. The inclusion of C<sub>6</sub>-ceramide, an apoptosis enhancer, and surface functionalization with folate molecules significantly increased <i>in vitro</i> potency. Pharmacokinetic studies show that the circulation time for all three difattyacid platins encapsulated in NE remained identical, thus indicating that chain length did not influence circulation time. A stable NMI-350 family of NEs were successfully designed, formulated, and characterized. The Ptā€“resistance in KBCR-1000 cells was reversed with the NMI-350 family. Dimyrisplatin loaded NE (NMI-350) was most potent <i>in vitro</i>. The NMI-350 family demonstrated identical pharmacokinetic profiles to one another and circulated much longer than cisplatin. These data indicate that NMI-350 warrants further preclinical and clinical development as a replacement for current Pt regimens especially for those afflicted with multi drug resistant cancers

    Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells

    No full text
    Exosomes have recently come into focus as ā€œnatural nanoparticlesā€ for use as drug delivery vehicles. Our objective was to assess the feasibility of an exosome-based drug delivery platform for a potent chemotherapeutic agent, paclitaxel (PTX), to treat MDR cancer. Herein, we developed and compared different methods of loading exosomes released by macrophages with PTX (exoPTX), and characterized their size, stability, drug release, and in vitro antitumor efficacy. Reformation of the exosomal membrane upon sonication resulted in high loading efficiency and sustained drug release. Importantly, incorporation of PTX into exosomes increased cytotoxicity more than 50 times in drug resistant MDCK(MDR1) (Pgp+) cells. Next, our studies demonstrated a nearly complete co-localization of airway-delivered exosomes with cancer cells in a model of murine Lewis Lung Carcinoma pulmonary metastases, and a potent anticancer effect in this mouse model. We conclude that exoPTX holds significant potential for the delivery of various chemotherapeutics to treat drug resistant cancers

    EGFR Targeted Theranostic Nanoemulsion for Image-Guided Ovarian Cancer Therapy

    No full text
    PURPOSE: Platinum-based therapies are the first line treatments for most types of cancer including ovarian cancer. However, their use is associated with dose-limiting toxicities and resistance. We report initial translational studies of a theranostic nanoemulsion loaded with a cisplatin derivative, myrisplatin and pro-apoptotic agent, C(6)-ceramide. METHODS: The surface of the nanoemulsion is annotated with an endothelial growth factor receptor (EGFR) binding peptide to improve targeting ability and gadolinium to provide diagnostic capability for image-guided therapy of EGFR overexpressing ovarian cancers. A high shear microfludization process was employed to produce the formulation with particle size below 150 nm. RESULTS: Pharmacokinetic study showed a prolonged blood platinum and gadolinium levels with nanoemulsions in nu/nu mice. The theranostic nanoemulsions also exhibited less toxicity and enhanced the survival time of mice as compared to an equivalent cisplatin treatment. CONCLUSIONS: Magnetic resonance imaging (MRI) studies indicate the theranostic nanoemulsions were effective contrast agents and could be used to track accumulation in a tumor. The MRI study additionally indicate that significantly more EGFR-targeted theranostic nanoemulsion accumulated in a tumor than non-targeted nanoemulsuion providing the feasibility of using a targeted theranostic agent in conjunction with MRI to image disease loci and quantify the disease progression
    corecore