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Abstract

Purpose—Platinum-based therapies are the first line treatments for most types of cancer 

including ovarian cancer. However, their use is associated with dose-limiting toxicities and 

resistance. We report initial translational studies of a theranostic nanoemulsion loaded with a 

cisplatin derivative, myrisplatin and pro-apoptotic agent, C6-ceramide.

Methods—The surface of the nanoemulsion is annotated with an endothelial growth factor 

receptor (EGFR) binding peptide to improve targeting ability and gadolinium to provide 

diagnostic capability for image-guided therapy of EGFR overexpressing ovarian cancers. A high 
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shear microfludization process was employed to produce the formulation with particle size below 

150 nm.

Results—Pharmacokinetic study showed a prolonged blood platinum and gadolinium levels with 

nanoemulsions in nu/nu mice. The theranostic nanoemulsions also exhibited less toxicity and 

enhanced the survival time of mice as compared to an equivalent cisplatin treatment.

Conclusions—Magnetic resonance imaging (MRI) studies indicate the theranostic 

nanoemulsions were effective contrast agents and could be used to track accumulation in a tumor. 

The MRI study additionally indicate that significantly more EGFR-targeted theranostic 

nanoemulsion accumulated in a tumor than non-targeted nanoemulsuion providing the feasibility 

of using a targeted theranostic agent in conjunction with MRI to image disease loci and quantify 

the disease progression.
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INTRODUCTION

Ovarian carcinoma is the most common cause of death from gynecologic malignancy and is 

frequently associated with a poor outcome due to the difficulties of early diagnosis (1, 2). 

For ovarian cancer, platinum-based drugs - carboplatin and cisplatin - increase overall 

survival and tumor free survival better than any other chemotherapeutic drug (3). However, 

their clinical use is still limited due to intrinsic and acquired resistance (4) and generalized 

toxicity, including acute nephrotoxicity, chronic neurotoxicity and adverse gastrointestinal 

reactions (5). Recurrent ovarian cancer is classified as been platinum resistant, defined as 

relapsing within 6 months, or platinum sensitive, defined as relapsing more than 6 months 

after completing initial platinum-based chemotherapy (6). Treatment decisions based on a 

cancer being “platinum-sensitive” or “platinum-resistant” underscoring the important role 

that platinum-based chemotherapy has in the treatment of this disease.

It has been envisioned that use of polymeric conjugates or nanocarrier-based systems may 

provide improved solubility of platinum-based chemotherapies, prolong half-life in 

circulation, increase tumor accumulation, decrease non-specific toxicity of platinum-based 

chemotherapies and potentially reduce the development of drug resistance (7). Thus, various 

polymeric conjugates and liposomes, micelles, dendrimers, and other carriers have been 

studied for delivery of platinum compounds (8–11). Cisplatin-loaded liposomes (lipoplatin) 

reduced tumor burden comparable to cisplatin and showed improved toxicity profile because 

of the slower release and lower exposure of platinum to normal tissues (12). However, this 

slower release characteristics also resulted in fewer platinum-DNA abducts from forming 

thus it was shown to have low clinical advantage over the standard of care platinum 

therapies (13).

The insolubility of cisplatin in organic solvents and solubility in water pose challenges to 

encapsulate and control release of platinum-based derivatives in nanomedicines. We 

recently reported novel hydrophobic platinum-derivatives by attaching myristic acid to 
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cisplatin (myrisplatin) which was encapsulated in the oil core of a stable nanoemulsion (14). 

Nanoemulsions are colloidal carriers formed by dispersion of oils in water and stabilized 

with an amphiphilic phospholipid monolayer (15–19). Significant amounts of hydrophobic 

drug can be loaded in the high volume fraction of the oil core in nanoemulsion (17, 19, 20). 

The nanoemulsions we investigate are usually composed entirely of generally regarded as 

safe grade (GRAS) materials, which have highly favorable safety profiles. Due to their small 

size (less than 200 nm), nanoemulsions are expected to preferentially accumulate in tumors 

via the enhanced permeability and retention (EPR) effect (21). The surface of the 

nanoemulsion can be modified with ligands for active targeting to tumors. The usefulness of 

nanoemulsions to improve delivery of chemotherapeutic payload for the treatment of 

ovarian cancer has been demonstrated by us (20, 22–25).

Theranostic nanomedicines are the state-of the art in molecular design and engineering to 

develop systems that can be used effectively for the detection, diagnosis, and treatment of 

cancer. Theranostic nanoemulsions can be engineered to have these capabilities in an all-in-

one platform, which include protection and controlled release of a therapeutic payload, 

targeted delivery and diagnostic functionality. Our nanoemulsions formulations can be 

surface annotated with gadolinium, a magnetic resonance imaging (MRI) contrast agent and 

has been shown to have relaxation times comparable to Magnevist® (14, 20). Folate-targeted 

nanoemulsions accumulated in tumors for prolonged period of time compared to 

Magnevist® and showed enhanced contrast compared to non-targeted nanoemulsions with 

MRI in SKOV-3 tumor-bearing mice suggesting active targeting of nanoemulsions due to 

folate modification (20).

In our previous work we developed a novel EGFR-targeted, gadolinium-annotated-

theranostic nanoemulsions that co-delivers myrisplatin and C6-ceramide (a proapoptotic 

agent) which is capable of overcoming platinum resistance in vitro and is an effective 

contrast agent (14). In this paper we describe the initial translational studies articulating 

imaging, safety, and efficacy capacity of this novel theranostic nanoemulsion.

MATERIALS AND METHODS

Materials

A hydrophobic platinum conjugate, myrisplatin was synthesized at the Nemucore Medical 

Innovations, Inc., (Worcester, MA) using published routes (14, 26). Gadolinium chelate 

gadolinium-diethylenetriaminepentaacetic acid-phosphatidylethanolamine (gadolinium-

DTPA-PE) to incorporate into nanoemulsions for MRI functionality was synthesized as 

described previously (14). EGFR targeting ligand was synthesized as reported previously 

(14, 24). The details regarding synthesis, purification and characterization of these 

conjugates were reported in our recent publication (14). Cisplatin (cis-diammineplatinum 

(II) dichloride) was from Sigma Chemicals (St. Louis, MO). C6-ceramide (N-hexanoyl-D-

erythro-sphingosine) was purchased from Avanti Polar Lipids (Alabaster, AL). Egg 

phosphotidylcholine (Lipoid® E80) was obtained from Lipoid GmbH (Ludwigshaffen, 

Germany). The pegylating agent, methoxy-poly(ethylene glycol)-2000 distearoyl-sn-

glycero-3-phosphoethanolamine, sodium salt (PEG2000DSPE) was purchased from Lysan 

Bio Inc. (Arab, AL). Poly unsaturated fatty acid (PUFA) rich flax seed oil was received 
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from Puritan’s Pride Inc. (Oakdale, NY). All other chemicals and solvents used were of the 

highest available grade.

Formulation and characterization of theranostic nanoemulsion

Theranostic nanoemulsion formulation for image-guided therapy consisting of myrisplatin 

and C6-ceramide in its lipid core and imaging and targeting moieties on the surface was 

prepared by high shear microfluidization process using LV1 Microfluidizer (Microfluidics 

Corporation, Newton, MA). The aqueous phase of the formulation was prepared by 

dissolving egg lecithin (2.4% w/v) and PEG2000DSPE (0.3% w/v) in 4 ml of glycerol 

(2.21% w/v)-water. To which, gadolinium-DTPA-PE (2% w/v) and EGFR targeting ligand 

(0.1% w/v) were added and stirred for 1 h to achieve uniform dispersion of all components. 

Oil phase was prepared by mixing of flax seed oil with the desired amounts of myrisplatin 

and C6-ceramide dissolved in chloroform, and evaporating the solvent using nitrogen gas, 

resulting in drug solubilized lipid phase. After this, aqueous and oil phases were heated 

(60°C, 2 min), mixed and then homogenized at 25,000 psi for 10 cycles to obtain the oil-in-

water theranostic nanoemulsion formulations. Non-targeted nanoemulsions were prepared 

by omitting EGFR targeting ligand from above listed procedure whereas blank 

nanoemulsions were prepared by omitting EGFR targeting ligand as well as myrisplatin and 

C6-ceramide.

The platinum concentration in formulations was determined by Inductively Coupled Plasma-

Mass Spectrometry (ICP-MS) (14). Gadolinium concentration was monitored by 

colorimetric method using arsenazo III dye assays as described previously (14, 27). T1 

relaxation times of gadolinium nanoemulsions formulations were measured using Magnetic 

Resonance Imaging (MRI). For T1 measurements, nanoemulsion sample in tubes were 

subjected to a phantom Brucker 500 MHz MRI machine (Bruker Biospec 20/70, Bruker 

Biospin MRI, Inc, Billerica, MA) in a 4.7 Tesla magnetic field, creating MRI scans showing 

nanoemulsion generated contrast as well as T1 time measurements. For comparison 

Magnevist®, a gadolinium-DTPA chelate, was also analyzed for T1 relaxation time at the 

same gadolinium concentration as the Gadolinium annotated-nanoemulsions.

Size distribution of all nanoemulsion formulations was determined by dynamic light 

scattering method. For this, samples were diluted 1000 times in deionized distilled water, 

and the droplet size was determined at 90° angle using Zetasizer ZS (Malvern, UK). 

Polydispersity index (PDI) was used as a measure for calculating particle size istribution. 

The zeta potential value of nanoemulsion was also determined using Zetasizer ZS. 

Nanoemulsion samples diluted in distilled water were placed in electrophoretic cell and the 

zeta potential measured basing on the electrophoretic mobility of the nanoemulsion droplets.

Pharmacokinetics and tissue distribution

All the animal study protocols were approved by the Northeastern University’s Institutional 

Animal Care and Use Committee. Pharmacokinetics and tissue distribution of platinum and 

gadolinium were performed in nu/nu mice (female, 20–25 g) purchased from Charles River 

Laboratories (Cambridge, MA). Mice divided into groups having three mice in each group 

received either intravenous (IV) via tail vein or intraperitoneal (IP) administration of non-
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targeted and EGFR-targeted theranostic nanoemulsions with myrisplatin dose equivalent to 

5 mg/kg of platinum. Whereas gadolinium dose was 0.072 mmoles/kg. A group of mice 

were also administered cisplatin at 10 mg/kg IV vial tail vein. Three mice from each group 

at various time points (5, 15, 30 min, and 1, 2, 4, 6 and 24 h) were anaesthetized with 

isoflurane and blood collected from the cardiac puncture into heparin treated tubes. The 

blood samples were then centrifuged at 3500 rpm for 15 min, the plasma removed and 

stored at −20 °C until analyzed for platinum and gadolinium using ICP-MS at University of 

North Carolina, Chapel Hill, NC. After blood collection, the mice were euthanized by 

cervical dislocation, and liver, kidney, heart, lungs and brain were removed. Tissues were 

stored at −20 °C until analyzed for platinum and gadolinium using ICP-MS.

For all treatments, 100 μL of 70% HNO3 with 100 ng/mL of Iridium was added to 50 μL of 

plasma for sum total metal detection. Samples were digested at 100 °C for 90 minutes. 

Filtered water was added to make a final volume of 1,000 μL for all plasma samples and 

stored at 4 °C until analysis.

For cisplatin samples, tissues were processed to measure total cisplatin as described above. 

The plasma was processed to measure total and unbound cisplatin. An additional 150 μL of 

plasma was required for unbound cisplatin concentration detection. Plasma was added to 

ultracentrifugation chamber and spun at 2500g for 30 minutes at 25 °C. After centrifugation, 

50 μL of ultrafiltration was collected and process like sum total plasma previously 

described. For tissue sum total gadolinium and Pt detection, a goal weight of 60 to 80 mg 

was collected. After weight was recorded, 100 μL of 70% HNO3 with 200 ng/mL of Iridium 

was added to each tissue. Tissues were digested at 100 °C for minimum 2 hrs and filtered 

water was added for final volume of 2,000 μL and stored at 4 °C until analysis.

ICP-MS elemental analysis was performed on an Agilent 7500cx (Agilent Technologies, 

Tokyo, Japan). Instrumental parameters were optimized daily to obtain best sensitivity 

before analysis. The lower limit of detection for gadolinium, platinum and Iridium was 1.0 

ng/mL. Indium was used for the external instrument standard.

Pharmacokinetic analysis

Pharmacokinetic parameters of platinum and gadolinium were estimated using WinNonlin 

(Phoenix version 6.0) program (Pharsight Corporation, USA). The mean residence time 

(MRT), the volume of distribution (Vd), total body clearance (Cl) and plasma half-life for 

the elimination phase (t1/2) were calculated by non-compartmental analysis (NCA) using 

weighed least square algorithm with uniform weighing. The area under the plasma and 

tissue concentration-time profiles (AUC) was calculated by the linear up log down.

MRI study

MRI was performed on female nu/nu mice (20–25 g) bearing subcutaneous flank SKOV-3 

tumors. Female nu/nu mice (20–25 g) were injected subcutaneously with 4×106 SKOV-3 

ovarian cancer cells suspended in 100 μL PBS (1:1 ratio of PBS and Matrigel HC) under 

light isoflurane anesthesia. After the tumor volume reached around 200–300 mm3, the mice 

were injected (n=3) IV via tail vein with MRI contrast agent gadolinium at 0.072 mmoles/kg 
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in non-targeted, EGFR-targeted nanoemulsions, or Magnevist®, (a clinically used 

gadolinium-DTPA chelate) and imaged under MRI over 24 h period using a phantom 

Brucker 500 MHz MRI machine (Bruker Biospec 20/70, Bruker Biospin MRI, Inc, Billerica, 

MA) in a 4.7 Tesla magnetic field. MRI scans showing nanoemulsion generated contrast in 

T1-weighted images was obtained. Magnevist® was used as a clinically relevant control 

imaging agent compared with nanoemulsions to detect changes in contrast efficiency and/or 

distribution.

Therapeutic efficacy in tumor bearing mice

Female nu/nu mice (20–25 g) were injected subcutaneously with 4×106 SKOV-3 ovarian 

cancer cells suspended in 100 μl PBS (1:1 ratio of PBS and Matrigel HC) under light 

isoflurane anesthesia. After the tumor volume reached around 150 mm3, the mice were 

randomly divided into four groups (n=6) and treated with vehicle (Control group), cisplatin 

solution, non-targeted and EGFR targeted theranostic nanoemulsions on a schedule of every 

7 days × 5. Treatment groups received first 3 cycles of 5 mg/kg platinum and additional 2 

cycles of 7.5 mg/kg platinum. Mice were monitored for tumor growth, survival time and 

change in body weight following the treatment.

DATA ANALYSIS

Data are reported as the average and standard deviation. Comparisons between the groups 

were made using student’s t-test and with more than two groups, the ANOVA test was used. 

Values of p < 0.05 were considered statistically significant.

RESULTS

Preparation and characterization of theranostic nanoemulsions

Theranostic nanoemulsion with imaging and targeting functionality, and co-encapsulating 

myrisplatin and C6-ceramide was prepared using high shear microfluidization process. The 

oil-in-water formulation was composed of flaxseed oil as an oil core in which myrisplatin 

and C6-ceramide were solubilized. Flax seed oil was emulsified in a glycerol-water using 

egg lecithin as an emulsifier. Glycerol was added to the formulation to obtain the osmolality 

required for IV administration (17). EGFR-targeting ligand and gadolinium-DTPA-PE were 

dissolved into glycerol-water, and when emulsified into oil, the lipid portion of these 

conjugates go into the oil core and EGFR and gadolinium remain on the surface of 

phospholipid monolayer and extends into aqueous phase as described earlier (14). 

PEG2000DSPE was also incorporated in the formulation to reduce mononuclear phagocyte 

(MNP) based clearance and promote longer blood circulation. Optimized microfludization 

conditions of 25,000 psi and 10 cycles were employed to obtain the particle size of 

formulations below 150 nm with narrow size distribution as reported earlier (14).

Particle size and zeta potential values of the theranostic nanoemulsions are showed in Table 

I. The mean hydrodynamic particle size of blank, non-targeted and EGFR-targeted 

formulations was about 150 nm with the PDI below 0.1, suggesting a narrow distribution of 

particle size in the formulations. Zeta potential measurements of formulations showed a 

surface charge in the range of −49 to − 59 mV. T1 relaxivities were determined using MRI. 
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T1 value of Magnevist® is 22 msec. As seen from Table I, the contrast efficiency of 

theranostic nanoemulsions is in the close range and comparable to Magnevist®.

Pharmacokinetics and tissue distribution analysis

The plasma concentration-time curves for platinum and gadolinium after the IV and IP 

administration of theranostic nanoemulsions and cisplatin are shown in Figure 1 and 2 with 

calculated pharmacokinetic parameters reported in Table II and III. Results show that IV 

administration resulted in an initial Cmax for non-targeted and EGFR targeted 

nanoemulsions, with platinum levels declined slowly over time (Figure 1) resulting in an 

observed significantly longer elimination-half lives in mice. Cisplatin also showed an initial 

Cmax but blood concentrations of protein bound and elemental platinum cleared at a much 

faster rate than either nanoemulsion (Figure 1). Gadolinium blood levels were also declined 

slowly and tracked with platinum suggesting the gadolinium was not separated out from the 

formulation in the blood circulation (Figure 2). This property is important for the 

nanoemulsion to remain functional for an extended period of time to provide effective tissue 

contrast by MRI. IP administration showed blood concentrations (Cmax) peaking at 3 h 

(Table II and Table III) and nearly identical levels to IV treated mice for both platinum and 

gadolinium. Cmax is not significantly different between non-targeted and EGFR targeted 

systems for both platinum and Gadolinium levels. However, 2–5-fold difference in Cmax 

was observed between IP and IV routes of administration. This difference may be due to 

nanoemulsion controlling drug release some extent so that the absorption was delayed when 

delivered through IP route. Overall, the plasma pharmacokinetic profile of platinum was 

improved when administered in nanoemulsion as compared to cisplatin.

Tissue (liver, kidney and lungs) concentrations of platinum and gadolinium after the 

administration of EGFR-targeted nanoemulsions are shown in Figure 3. In general 

significant amounts of platinum and gadolinium levels were noted in liver for 

nanoemulsions due reticuloendothelial uptake of nanoparticles. After administration of 

cisplatin the highest exposures occur in the kidney which is consistent with prior studies 

(28).

MRI study

Gadolinium chelates typically provide contrast in tissue compartments in which it is 

concentrated in T1-weighted images. Figure 4A and 4B shows tumor accumulation of 

theranostic nanoemulsions following IV injection. Magnevist® rapidly accumulates and 

clears from the tumor within 6 h, while the non-targeted and EGFR- targeted nanoemulsion 

accumulate in the tumor for longer duration up to 24 h. However, EGFR-targeted 

nanoemulsion showed enhanced contrast, suggesting slower clearance rate as compared to 

non-targeted nanoemulsion. Moreover, the T1-weighted images show that the EGFR-

targeted nanoemulsion distributes uniformly across the tumor compared to non-targeted 

nanoemulsion as well as Magnevist®, Figure 4A. The relative T1 signal generated by Gd in 

the tumor region of interest was used to determine uptake. EGFR-targeted nanoemulsion and 

non-targeted nanoemulsion showed tumor tissue accumulation over the period of 24 h 

Figure 4B. The EGFR-targeted nanoemulsion showed enhanced accumulation in tumor 

tissue compared to non-targeted nanoemulsion. Clinically used magnevist accumulated in 
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tumor tissues very rapidly and cleared within 5 h Fig 4B. These results indicate the EGFR-

targeted theranostic nanoemulsion was effective contrast agent for MRI and the feasibility of 

using MRI to localize the disease and quantify the disease progression of solid tumors. This 

data also demonstrates that theranostic nanoemulsions with its payload in the EGFR-targeted 

nanoemulsion will show a similar accumulation and residence profile in the EGFR+ tumors, 

which can potentially increase therapeutic efficacy. These results when taken with the 

pharmacokinetic data showing that platinum and gadolinium have similar clearance profiles 

suggest that the gadolinium based tumor contrast in MRI (Figure 4) is a good surrogate 

marker for platinum accumulation in the tumor.

Therapeutic efficacy

The mean survival time was evaluated in mice bearing SKOV-3 ovarian tumors and 

compared to cisplatin therapy (Figure 5A). Mice in the control group reached tumor 

volumes of approximately 1000 mm3 at 21 days, the survival end point for the study, and 

were removed from the study. However, treated groups survived longer, and the survival 

times were 21, 25, 32 and 32 days with control, cisplatin, non-targeted and EGFR-targeted 

nanoemulsions, respectively. Mice were administered with 5 mg/kg of Pt on every week for 

three weeks, later the dose was increased to 7.5 mg/kg based on tumor response and 

continued for 4th and 5th week. Toxic effects in cisplatin treated mice were evident, as mice 

lost 20% of their body weight and were sacrificed (Figure 5B). However, the mice in the 

non-targeted and EGFR-targeted theranostic nanoemulsion groups did not lose significant 

weight and their physical activity was normal. These results suggest that mice tolerated a 

high dose of Pt given in the nanoemulsion formulations.

DISCUSSION

Recurrent cancers develop multidrug resistance (MDR) to conventional and novel 

chemotherapeutic agents representing a formidable challenge in clinical cancer therapy, 

especially for the effective treatment of gynecological malignancies, which are generally 

diagnosed at a late stage. Ovarian cancer is the most lethal of the gynecologic cancers due to 

its propensity to spread into the upper abdomen and beyond, and a majority of newly 

diagnosed ovarian cancer patients will progress to a chemo-resistant state. Platinum 

containing therapeutic compounds are alkylating agents that exert anticancer activity by 

disrupting DNA structure in cell nuclei through the formation of intrastrand and interstrand 

cross-links (29–31). Cisplatin is used to treat ovarian cancer patients, but there is significant 

dose related nephrotoxicity. Carboplatin, which has virtually replaced cisplatin for patient 

treatment, forms reactive species more slowly than cisplatin and has a much better, but still 

significant, toxicity profile including renal damage, electrolyte loss, nausea and vomiting.

Toxicity and platinum-resistance are the driving force to identify safer, more effective and 

selective platinum therapy. Strategies include preparing hydrophobic prodrugs, platinum-

polymer conjugates or encapsulating them into nanocarrier formulations for targeted and 

controlled release (32–34). Lipoplatin, a cisplatin liposomal formulation, was tested in phase 

I–III clinical trials, and showed a significantly improved toxicity profile and a reduction in 

tumor burden comparable to that of free cisplatin but overall it has not proven to be more 
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efficacious (12, 35). STEALTH liposomal cisplatin formulations were developed for the 

treatment of cancers that are generally sensitive to platinum, but may be resistant to 

conventional cisplatin, and reduce toxicities by preferentially delivering drug to the tumor. 

Even though there is a several-fold higher exposure of total Pt in tumors compared to 

cisplatin, this did not translate into significant antitumor response in clinical trials (13, 36). 

These results suggest that formulations distribute into tumors, but release less platinum and 

form fewer platinum-DNA adducts than cisplatin (13).

Innovation in platinum encapsulation and controlled release are still a challenge due to 

physicochemical properties of platinum compounds. Lipophilicity is a critical parameter for 

design of novel platinum-based drugs to improve absorption and transport through 

membranes (37). In a recent study, a platinum prodrug was synthesized that had enough 

hydrophobicity for encapsulation in PLGA-b-PEG nanoparticles, which was found to be 

safe and effective (32). Recently platinum compounds containing a monocarboxylate and O 

-> Pt complexation resulted in a faster release of DNA reactive adducts comparable to 

cisplatin (34), and formed the basis for designing some lipophilic platinum derivatives 

suitable for nanoemulsion encapsulation. In this paper, we report initial in vivo data of a 

theranostic nanoemulsion with a cisplatin derivative, myrisplatin and pro-apoptotic agent, 

C6-ceramide for image-guided therapy of EGFR overexpressing ovarian cancer.

Our strategy for platinum therapy focuses on the development of lipophilic platinum 

conjugates that can be incorporated into the oil core of long-circulating targeted 

nanoemulsions. Our platinum chemistry involves the synthesis of hydrophobic platinum 

tailed with a myristic acid. Another reason for encapsulation of platinum in a nanoemulsion 

is to design additional features into the delivery system that could assist in mitigating 

platinum-resistant mechanisms. Mechanisms of platinum resistance include: reduced 

platinum influx, increased platinum efflux, escape from apoptosis, sequestration by chemical 

conjugation, or increased DNA repair (38). The present nanoemulsion is designed to 

enhance platinum influx by receptor-mediated endocytosis, potentially reduce platinum 

efflux and diminish escape from apoptosis.

Table II and Table III highlights the enhanced pharmacokinetic profile of platinum/

gadolinium delivered by either targeted or non-targeted nanoemulsions administered either 

IV or IP All parameters suggest the both formulations are long circulating and remain intact. 

Notably there is a significant increase in half life of the platinum/gadolinium compared to 

cisplatin. The biodistribution profile of platinum and gadolinum was also comparable. The 

nanoemulsion mainly accumulated in liver which is the common elimination pathway for 

nanocarriers (Figure 3). Even though still consistent with long-circulation, we also observed 

a difference in the half life of gadolinium compared to platinum in the nanoemulsions. We 

attribute this difference to the way the nanoemulsions were designed to have the 

gadolinium-DTPA chelating moiety exposed on the surface so it could function as contrast 

agent while myrisplatin is sequestered inside the oil droplet to abrogate platinum binding to 

serum protein to mitigate systemic toxicities. The gadolinium chelation mechanism with 

DTPA-PE conjugate includes a coordination with a free water molecule which could be 

responsible for premature release of gadolinium from the particle and difference in half life 

exhibited by these formulations.
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Encapsulation of the prodrug, myrisplatin, in the lipid core of the nanoemulsion protects the 

platinum from the elemental platinum-efflux mechanisms. To enhance influx the surface of 

the nanoemulsion was functionalized with an EGFR binding peptide, which preferentially 

binds with high affinity to the EGF receptor and undergoes receptor-mediated endocytosis 

of the targeted nanoemulsion. In light of the correlation with poor clinical outcome we 

previously investigated whether targeting EGFR could enhance in vitro potency (14). EGFR 

targeting was achieved through the use of a lipidated-version of a 12 amino acid peptide that 

has demonstrated efficient binding and preferential internalization into EGFR over 

expressing tumor cells in vitro, and tumor xenografts in vivo (24, 39–41). Our previous 

study found that EGFR targeting enhanced the potency of myrisplatin as compared to the 

non-targeted approach (14).

We examined the ability of the platinum carrying nanoemulsions to limit tumor growth of 

SKOV-3 cells in vivo. Non-targeted and EGFR-targeted nanoemulsions were used for the 

first time to deliver myrisplatin in combination with ceramides and slowed tumor growth 

comparable to cisplatin at equal doses. From our knowledge of the STEALTH liposomal 

cisplatin studies where platinum had difficulties releasing from the liposomes, we designed 

our in vivo efficacy experiment to directly compare equal doses of nanoemulsion 

encapsulated platinum to cisplatin. If we did not see any efficacy with this design then it 

might indicate nanoemulsion encapsulated myrisplatin was not releasing platinum to form 

DNA-platinum adducts. However, during our in vivo study we found that both targeted and 

non-targeted nanoemulsions had similar effects on growth of SKOV-3 xenograft tumors 

(data not shown) and improved survival compared to the cisplatin control group. Figure 5A 

shows that median survival for groups treated with non-targeted and targeted nanoemulsions 

was significantly different from control; while the cisplatin itself did not differ significantly 

from control. The dose escalation phase of the study indicated that non-targeted and EGFR-

targeted nanoemulsions did not induce the significant weight loss which the cisplatin cohort 

experienced. This indicates a potential for widening the therapeutic window for platinum 

therapies, since myrisplatin encapsulated nanoemulsions had significantly less systemic 

toxicity Figure 5B. The results indicate that therapeutic platinum is being released but 

EGFR-targeting is not improving efficacy in this initial assay which is counter intuitive 

given the results of the MRI study and needs to be investigated further.

A key challenge in ovarian cancer diagnosis and therapy is the ability to follow drug 

pharmacodynamics within the tumor region in real time. The nanoemulsions created for this 

study was designed as a theranostic, capable of simultaneously imaging and targeting drug 

delivery to EFGR-positive ovarian tumors. We designed our platinum-delivery vehicle so a 

relative imaging signal indicative of nanoemulsion uptake by a tumor shortly after IV 

injection and in a non-invasive manner by functionalizing the surface of the nanoemulsion 

with gadolinium-DTPA-PE chelate containing paramagnetic ion gadolinium for MRI 

contrast enhancement. This design with the gadolinium chelate residing on the outer surface 

of the nanoemulsion provides a suitable environment for gadolinium longitudinal relaxivity 

and generates contrast for MRI, thus allowing rapid visualization of drug 

pharmacodynamics and potentially quicker monitoring of disease progression in ovarian 

cancer patients.
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Previously we showed that non-targeted and targeted nanoemulsions have T1 values similar 

to those seen for clinically approved Magnevist®. We investigated whether nanoemulsion 

has the ability to effectively target subcutaneous EGFR+ SKOV-3 cells and enhance the T1 

signal of the tumor. SKOV-3 tumors were grown to 200–300 mm3, and serially imaged over 

24 hours. Figure 4A images show the resulting data of the entire mouse. Magnevist® rapidly 

accumulates in the tumor over the first hour and resolves to near baseline by the 6th hour. 

Non-targeted nanoemulsion primarily accumulates by the EPR effect enhancing tumor 

imaging over a longer period of time than Magnevist®. Targeted nanoemulsion takes 

advantage of both the EPR effect and active targeting of EGFR+ SKOV-3. EGFR-targeted 

nanoemulsions accumulate faster and have a longer resident time in the tumor than the other 

agents. This data suggest the therapeutic platinum/C6-ceramides should have a longer 

resident time in the tumor increasing the potential for a therapeutic response. Further 

investigations will have to be performed to understand the perceived differences between the 

efficacy and imaging studies.

Overall, this study demonstrates that the theranostic properties of a targeted platinum 

nanomedicine should be advantageous for the treatment of highly aggressive EGFR-positive 

ovarian cancer. As most ovarian cancers will eventually become platinum-resistant we have 

shown that co-delivery of myrisplatin and C6-ceramide provides a potential therapeutic 

option that is less toxic and has attributes designed to overcome platinum resistance by using 

receptor-mediated endocytosis to enhance particle accumulation as shown by MRI. The 

diagnostic potential of the nanoemulsion is designed for direct monitoring of nanomedicine 

tissue distribution and has potential for monitoring disese progression.

CONCLUSIONS

We developed a multifunctional nanodelivery platform consisting of the theranostic 

nanoemulsion with a cisplatin derivative, a novel platinum compound myrisplatin and pro-

apoptotic agent, C6-ceramide targeted with EGFR biding peptide and gadolinium for 

diagnostic capability. The formulation was effective and less toxic than cisplatin in treating 

a xenograft ovarian cancer model. These theranostic nanoemulsion formulations can be 

delivered at the same or greater dose than cisplatin and Magnevist® with no visual signs of 

toxicity. It will be interesting to see if distribution of imaging agent can be used to predict 

distribution of therapeutic agent and thereby can be used to predict therapeutic response in 

patients. This would be an important advancement in the treatment of platinum-resistance as 

physicians have a limited opportunity to find an effective therapy for patients with such 

advanced disease. While further preclinical efficacy, imaging and toxicology investigations 

are required to confirm these results, the medical utility of this novel nanomedicine 

configuration based on the initial results is promising.
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Abbreviations

nm nanometers

rpm revolutions per minute

min minutes

μL microliters

ng nanograms

mg milligrams

kg kilograms

hrs/h hours

g grams

psi pounds per square inch

mV millivolts

Gd Gadoliniump

Pt Platinum

mmoles millimoles

mm millimeters

EGFR endothelial growth factor receptor

w/v weight/volume

DNA deoxyribonucleic acid

msec milliseconds
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Figure 1. 
Platinum plasma concentration-time profile after IV via tail vein or IP administration of 

cisplatin, non-targeted and EGFR-targeted nanoemulsions to nu/nu mice. Myrisplatin dose 

in nanoemulsion equivalent to 5 mg/kg of platinum and 10 mg/kg for cisplatin. n=3.
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Figure 2. 
Gadolinium plasma concentration -time profile after IV via tail vein or IP administration of 

non-targeted and EGFR-targeted nanoemulsion formulations to nu/nu mice. Gadolinum dose 

was 0.072 mmoles/kg. n=3.
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Figure 3. 
Free Cisplatin and platinum, gadolinium levels in tissues after IV administration via tail vein 

in nu/nu mice. Cisplatin dose was 10mg/kg. EGFR-targeted nanoemulsion were 

administered at myrisplatin dose equivalent to 5 mg/kg of platinum and 0.072 mmoles/kg of 

gadolinium. n=3.
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Figure 4. 
A. T1 weighted MR images and B. quantitative analysis of % tumor signal vs time of mice 

bearing subcutaneous SKOV-3 tumor xenograft post IV injection via tail vein of magnevist, 

non-targeted nanoemulsion and EGFR-targeted nanoemulsion. Arrows indicate 

accumulation of gadolinium in tumor tissue. n=3.
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Figure 5. 
A. Kaplan-Meier survival analysis and B. change in body weight on nu/nu mice bearing 

SKOV-3 ovarian tumors when injected with vehicle control, cisplatin alone, myrisplatin and 

C6-ceramide loaded non-targeted and EGFR-targeted theranostic nanoemulsions IV via tail 

vein. n=6, ± S.D.
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Table I

Properties of theranostic nanoemulsion formulations

Formulations
Hydrodynamic diameter of nanoemulsion droplets

Zeta Potential (mV) T1 Relaxivity (msec)
Size (nm) PDI

Blank nanoemulsion 150 ± 2 0.01 −52 ± 10 -

Non-targeted nanoemulsion 148 ± 6 0.05 −58 ± 11 35 ± 14

EGFR-targeted nanoemulsion 149 ± 3 0.06 −59 ± 13 47 ± 1

The values are shown as Avg ± SD, n=3.
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