301 research outputs found

    Calcareous Nannofossils and Paleoclimatic Evolution Across the Eocene-Oligocene Transition at IODP Site U1509, Tasman Sea, Southwest Pacific Ocean

    Get PDF
    The Eocene‐Oligocene transition (EOT; ∼34 Ma) was one of the most prominent global cooling events of the Cenozoic, coincident with the emergence of continental‐scale ice‐sheets on Antarctica. Calcareous nannoplankton experienced significant assemblage turnover at a time of long‐term surface ocean cooling and trophic conditions, suggesting cause‐effect relationships between Antarctic glaciation, broader climate changes, and the response of phytoplankton communities. To better evaluate the timing and nature of these relationships, we generated calcareous nannofossil and geochemical data sets (δ18O, δ13C and %CaCO3) over a ∼5 Myr stratigraphic interval recovered across the EOT from IODP Site U1509 in the Tasman Sea, South Pacific Ocean. Based on trends observed in the calcareous nannofossil assemblages, there was an overall decline of warm‐oligotrophic communities, with a shift toward taxa better adapted to cooler more eutrophic conditions. Assemblage changes indicate four distinct phases caused by temperature decrease and variations in paleocurrents: late Eocene warm‐oligotrophic phase, precursor diversity‐decrease phase, early Oligocene cold‐eutrophic phase, and a steady‐state cosmopolitan phase. The most prominent shift in the assemblages occurred during the ∼550 kyr‐long precursor diversity‐decrease phase, which has relatively high bulk δ18O and %CaCO3 values, and predates the phase of maximum glacial expansion (Earliest Oligocene Glacial Maximum–EOGM)

    The era of nano-bionic: 2D materials for wearable and implantable body sensors

    Get PDF
    Nano-bionics have the potential of revolutionizing modern medicine. Among nano-bionic devices, body sensors allow to monitor in real-time the health of patients, to achieve personalized medicine, and even to restore or enhance human functions. The advent of two-dimensional (2D) materials is facilitating the manufacturing of miniaturized and ultrathin bioelectronics, that can be easily integrated in the human body. Their unique electronic properties allow to efficiently transduce physical and chemical stimuli into electric current. Their flexibility and nanometric thickness facilitate the adaption and adhesion to human body. The low opacity permits to obtain transparent devices. The good cellular adhesion and reduced cytotoxicity are advantageous for the integration of the devices in vivo. Herein we review the latest and more significant examples of 2D material-based sensors for health monitoring, describing their architectures, sensing mechanisms, advantages and, as well, the challenges and drawbacks that hampers their translation into commercial clinical devices

    Paleoenvironmental Changes at ODP Site 702 (South Atlantic): Anatomy of the Middle Eocene Climatic Optimum

    Get PDF
    The Middle Eocene Climatic Optimum (MECO) was an unusual global warming event that interrupted the long-term Eocene cooling trend ca. 40 Ma. Here we present new high-resolution bulk and benthic isotope records from South Atlantic ODP Site 702 to characterize the MECO at a high latitude setting. The MECO event, including early and peak warming as well as recovery to background levels, had an estimated ~300 Kyr duration (~40.51 to ~40.21 Ma). Cross-plots (delta O-18 vs. delta C-13) suggest that the mechanisms driving coupled changes in O and C isotope values across the MECO were weaker or absent before the event. The paleoecological response has been evaluated by quantitative analysis of calcareous nannofossils and benthic foraminifera assemblages. We document a shift in the biogeographical distribution of warm and temperate calcareous nannoplankton taxa, which migrated toward higher latitudes due to increased temperatures during the MECO. Conversely, changes in the organic matter flux to the seafloor appear to have controlled benthic foraminifera dynamics at Site 702. Benthic phytodetritus exploiting taxa increased in abundance coinciding with a positive delta C-13 excursion, ~150 Kyr before the start of the delta O-18 negative excursion that marks the start of MECO warming. Our data suggest that paleoecological disturbance in the deep sea predates MECO delta O-18 excursion and that it was driven by changes in the type and/or amount of organic matter reaching the seafloor rather than by increased temperature

    3D Printable Conducting and Biocompatible PEDOT-graft-PLA Copolymers by Direct Ink Writing

    Get PDF
    Tailor-made polymers are needed to fully exploit the possibilities of additive manufacturing, constructing complex, and functional devices in areas such as bioelectronics. In this paper, the synthesis of a conducting and biocompatible graft copolymer which can be 3D printed using direct melting extrusion methods is shown. For this purpose, graft copolymers composed by conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and a biocompatible polymer polylactide (PLA) are designed. The PEDOT-g-PLA copolymers are synthesized by chemical oxidative polymerization between 3,4-ethylenedioxythiophene and PLA macromonomers. PEDOT-g-PLA copolymers with different compositions are obtained and fully characterized. The rheological characterization indicates that copolymers containing below 20 wt% of PEDOT show the right complex viscosity values suitable for direct ink writing (DIW). The 3D printing tests using the DIW methodology allows printing different parts with different shapes with high resolution (200\ua0\ub5m). The conductive and biocompatible printed patterns of PEDOT-g-PLA show excellent cell growth and maturation of neonatal cardiac myocytes cocultured with fibroblasts

    The Late Miocene-Early Pliocene Biogenic Bloom: An Integrated Study in the Tasman Sea

    Get PDF
    The Late Miocene-Early Pliocene Biogenic Bloom (∼9–3.5 Ma) was a paleoceanographic phenomenon defined by anomalously high accumulations of biological components at multiple open ocean sites, especially in certain regions of the Indian, and Pacific oceans. Its temporal and spatial extent with available information leaves fundamental questions about driving forces and responses unanswered. In this work, we focus on the middle part of the Biogenic Bloom (7.4–4.5 Ma) at International Ocean Discovery Program Site U1506 in the Tasman Sea, where we provide an integrated age model based on orbital tuning of the Natural Gamma Radiation, benthic foraminiferal oxygen isotopes, and calcareous nannofossil biostratigraphy. Benthic foraminiferal assemblages suggest changes in deep water oxygen concentration and seafloor nutrient supply during generally high export productivity conditions. From 7.4 to 6.7 Ma, seafloor conditions were characterized by episodic nutrient supply, perhaps related to seasonal phytoplankton blooms. From 6.7 to 4.5 Ma, the regime shifted to a more stable interval characterized by eutrophic and dysoxic conditions. Combined with seismic data, a regional change in paleoceanography is inferred at around 6.7 Ma, from stronger and well-oxygenated bottom currents to weaker, oxygen-depleted bottom currents. Our results support the hypothesis that the Biogenic Bloom was a complex, multiphase phenomenon driven by changes in ocean currents, rather than a single uniform period of sustained sea surface water productivity. Highly resolved studies are thus fundamental to its understanding and the disentanglement of local, regional, and global imprints

    Mixed Conductive, Injectable, and Fluorescent Supramolecular Eutectogel Composites

    Get PDF
    Funding Information: This work was supported by Marie Sklodowska‐Curie Research and Innovation Staff Exchanges (RISE) under the grant agreement No 823989 “IONBIKE”. The financial support received from CONICET and ANPCyT (Argentina) is also gratefully acknowledged. M. C.‐G. thanks Emakiker Grant Program of POLYMAT. L. C. T. is grateful to Fundação para a Ciência e a Tecnologia (FCT/MCTES) in Portugal for her research contract under Scientific Employment Stimulus (2020.01555.CEECIND), and Associate Laboratory for Green Chemistry—LAQV, which is also financed by FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020). D. M. thanks “Ayuda RYC2021‐031668‐I financiada por MCIN/AEI/10.13039/501100011033 y por la Unión Europea NextGenerationEU/PRTR”. The authors thank the technical and human support provided by SGIker (UPV/EHU/ERDF, EU). Funding Information: This work was supported by Marie Sklodowska-Curie Research and Innovation Staff Exchanges (RISE) under the grant agreement No 823989 “IONBIKE”. The financial support received from CONICET and ANPCyT (Argentina) is also gratefully acknowledged. M. C.-G. thanks Emakiker Grant Program of POLYMAT. L. C. T. is grateful to Fundação para a Ciência e a Tecnologia (FCT/MCTES) in Portugal for her research contract under Scientific Employment Stimulus (2020.01555.CEECIND), and Associate Laboratory for Green Chemistry—LAQV, which is also financed by FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020). D. M. thanks “Ayuda RYC2021-031668-I financiada por MCIN/AEI/10.13039/501100011033 y por la Unión Europea NextGenerationEU/PRTR”. The authors thank the technical and human support provided by SGIker (UPV/EHU/ERDF, EU). Publisher Copyright: © 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.Eutectogels are an emerging family of soft ionic materials alternative to ionic liquid gels and organogels, offering fresh perspectives for designing functional dynamic platforms in water-free environments. Herein, the first example of mixed ionic and electronic conducting supramolecular eutectogel composites is reported. A fluorescent glutamic acid-derived low-molecular-weight gelator (LMWG) was found to self-assemble into nanofibrillar networks in deep eutectic solvents (DES)/poly(3,4-ethylenedioxythiophene) (PEDOT): chondroitin sulfate dispersions. These dynamic materials displayed excellent injectability and self-healing properties, high ionic conductivity (up to 10−2 S cm−1), good biocompatibility, and fluorescence imaging ability. This set of features turns the mixed conducting supramolecular eutectogels into promising adaptive materials for bioimaging and electrostimulation applications.publishersversionpublishe

    The late Miocene-early Pliocene biogenic bloom: an integrated study in the Tasman sea

    Get PDF
    The Late Miocene-Early Pliocene Biogenic Bloom (∼9–3.5 Ma) was a paleoceanographic phenomenon defined by anomalously high accumulations of biological components at multiple open ocean sites, especially in certain regions of the Indian, and Pacific oceans. Its temporal and spatial extent with available information leaves fundamental questions about driving forces and responses unanswered. In this work, we focus on the middle part of the Biogenic Bloom (7.4–4.5 Ma) at International Ocean Discovery Program Site U1506 in the Tasman Sea, where we provide an integrated age model based on orbital tuning of the Natural Gamma Radiation, benthic foraminiferal oxygen isotopes, and calcareous nannofossil biostratigraphy. Benthic foraminiferal assemblages suggest changes in deep water oxygen concentration and seafloor nutrient supply during generally high export productivity conditions. From 7.4 to 6.7 Ma, seafloor conditions were characterized by episodic nutrient supply, perhaps related to seasonal phytoplankton blooms. From 6.7 to 4.5 Ma, the regime shifted to a more stable interval characterized by eutrophic and dysoxic conditions. Combined with seismic data, a regional change in paleoceanography is inferred at around 6.7 Ma, from stronger and well-oxygenated bottom currents to weaker, oxygen-depleted bottom currents. Our results support the hypothesis that the Biogenic Bloom was a complex, multiphase phenomenon driven by changes in ocean currents, rather than a single uniform period of sustained sea surface water productivity. Highly resolved studies are thus fundamental to its understanding and the disentanglement of local, regional, and global imprints

    The Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage at the Gorrondatxe section, Spain

    Get PDF
    The GSSP for the base of the Lutetian Stage (early/ middle Eocene boundary) is defined at 167.85 metres in the Gorrondatxe sea-cliff section (NW of Bilbao city, Basque Country, northern Spain; 43º22'46.47" N, 3º 00' 51.61" W). This dark marly level coincides with the lowest occurrence of the calcareous nannofossil Blackites inflatus (CP12a/b boundary), is in the middle of polarity Chron C21r, and has been interpreted as the maximumflooding surface of a depositional sequence that may be global in extent. The GSSP age is approximately 800 kyr (39 precession cycles) younger than the beginning of polarity Chron C21r, or ~47.8 Ma in the GTS04 time scale. The proposal was approved by the International Subcommission on Paleogene Stratigraphy in February 2010, approved by the International Commission of Stratigraphy in January 2011, and ratified by the International Union of Geological Sciences in April 2011.Published86-1082.2. Laboratorio di paleomagnetismoJCR Journalrestricte

    The Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage at the Gorrondatxe section, Spain

    Get PDF
    The GSSP for the base of the Lutetian Stage (early/ middle Eocene boundary) is defined at 167.85 metres in the Gorrondatxe sea-cliff section (NW of Bilbao city, Basque Country, northern Spain; 43º22'46.47" N, 3º 00' 51.61" W). This dark marly level coincides with the lowest occurrence of the calcareous nannofossil Blackites inflatus (CP12a/b boundary), is in the middle of polarity Chron C21r, and has been interpreted as the maximumflooding surface of a depositional sequence that may be global in extent. The GSSP age is approximately 800 kyr (39 precession cycles) younger than the beginning of polarity Chron C21r, or ~47.8 Ma in the GTS04 time scale. The proposal was approved by the International Subcommission on Paleogene Stratigraphy in February 2010, approved by the International Commission of Stratigraphy in January 2011, and ratified by the International Union of Geological Sciences in April 2011.Published86-1082.2. Laboratorio di paleomagnetismoJCR Journalrestricte
    corecore