505 research outputs found

    The oxygen content of the high-temperature superconducting compound Bi(2+x)Sr(3-y)CayCu2O(8+d) with respect to varying Ca and Bi contents

    Get PDF
    The oxygen content of Bi(2+x)Sr(3-y)Cu2O(8+d) (2212 phase) has been determined as a function of its cation concentration. With increasing Ca and Bi content the oxygen content increases and T(sub c) decreases. The oxygen content of Ca rich 2212 phase increases with decreasing annealing temperatures. The study shows that the T(sub c) of the 2212 phase primarily is controlled by its cation concentration

    Introduction of artificial pinning centres in Bi2Sr2CaCu2O8 ceramics

    Get PDF
    Considering the phase equilibrium diagram of the system Bi203-SrO-CaO-CuO, single phase 'Bi2Sr2CaCu208' ceramics have been transformed by a simple annealing procedure into multiphase samples. The transformation results in the formation of second phases and in an increase of the intra-grain critical current density at 1 T of five times. This increase is believed to express improved pinning properties of the superconducting crystals. The prepared pinning centers are believed to be e.g. coherent precipitates (Guinier-Preston-zones) within the superconducting crystals

    Getting DNA twist rigidity from single molecule experiments

    Get PDF
    We use an elastic rod model with contact to study the extension versus rotation diagrams of single supercoiled DNA molecules. We reproduce quantitatively the supercoiling response of overtwisted DNA and, using experimental data, we get an estimation of the effective supercoiling radius and of the twist rigidity of B-DNA. We find that unlike the bending rigidity, the twist rigidity of DNA seems to vary widely with the nature and concentration of the salt buffer in which it is immerged

    Relativistic quantum model of confinement and the current quark masses

    Get PDF
    We consider a relativistic quantum model of confined massive spinning quarks and antiquarks which describes leading Regge trajectories of mesons. The quarks are described by the Dirac equations and the gluon contribution is approximated by the Nambu-Goto straight-line string. The string tension and the current quark masses are the main parameters of the model. Additional parameters are phenomenological constants which approximate nonstring short-range contributions. Comparison of the measured meson masses with the model predictions allows one to determine the current quark masses (in MeV) to be ms=227±5, mc=1440±10, mb=4715±20m_s = 227 \pm 5,~ m_c = 1440 \pm 10,~ m_b = 4715 \pm 20. The chiral SU3SU_3 model[23] makes it possible to estimate from here the uu- and dd-quark masses to be mu=6.2±0.2m_u = 6.2 \pm 0.2~ Mev and md=11.1±0.4m_d = 11.1 \pm 0.4 Mev.Comment: 15 pages, LATEX, 2 tables. (submitted to Phys.Rev.D

    Custom stems for femoral deformity in patients less than 40 years of age: 70 hips followed for an average of 14 years

    Get PDF
    Background and purpose Femoral deformity associated with osteoarthritis is a challenge for both the surgeon and the implant. Many of the patients with these deformities are young. Standard implants can be difficult to fit into these femurs. We prospectively evaluated the outcome of custom uncemented femoral stems in young patients

    Gauge vortex dynamics at finite mass of bosonic fields

    Get PDF
    The simple derivation of the string equation of motion adopted in the nonrelativistic case is presented, paying the special attention to the effects of finite masses of bosonic fields of an Abelian Higgs model. The role of the finite mass effects in the evaluation of various topological characteristics of the closed strings is discussed. The rate of the dissipationless helicity change is calculated. It is demonstrated how the conservation of the sum of the twisting and writhing numbers of the string is recovered despite the changing helicity.Comment: considerably revised to include errata to journal versio

    A discrete geometric approach for simulating the dynamics of thin viscous threads

    Full text link
    We present a numerical model for the dynamics of thin viscous threads based on a discrete, Lagrangian formulation of the smooth equations. The model makes use of a condensed set of coordinates, called the centerline/spin representation: the kinematical constraints linking the centerline's tangent to the orientation of the material frame is used to eliminate two out of three degrees of freedom associated with rotations. Based on a description of twist inspired from discrete differential geometry and from variational principles, we build a full-fledged discrete viscous thread model, which includes in particular a discrete representation of the internal viscous stress. Consistency of the discrete model with the classical, smooth equations is established formally in the limit of a vanishing discretization length. The discrete models lends itself naturally to numerical implementation. Our numerical method is validated against reference solutions for steady coiling. The method makes it possible to simulate the unsteady behavior of thin viscous jets in a robust and efficient way, including the combined effects of inertia, stretching, bending, twisting, large rotations and surface tension

    A human cell atlas of fetal gene expression

    Get PDF
    The gene expression program underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of gene expression and chromatin accessibility in fetal tissues. For gene expression, we applied three-level combinatorial indexing to >110 samples representing 15 organs, ultimately profiling ~4 million single cells. We leveraged the literature and other atlases to identify and annotate hundreds of cell types and subtypes, both within and across tissues. Our analyses focused on organ-specific specializations of broadly distributed cell types (such as blood, endothelial, and epithelial), sites of fetal erythropoiesis (which notably included the adrenal gland), and integration with mouse developmental atlases (such as conserved specification of blood cells). These data represent a rich resource for the exploration of in vivo human gene expression in diverse tissues and cell types

    Spatial and cell type transcriptional landscape of human cerebellar development

    Get PDF
    The human neonatal cerebellum is one-fourth of its adult size yet contains the blueprint required to integrate environmental cues with developing motor, cognitive and emotional skills into adulthood. Although mature cerebellar neuroanatomy is well studied, understanding of its developmental origins is limited. In this study, we systematically mapped the molecular, cellular and spatial composition of human fetal cerebellum by combining laser capture microscopy and SPLiT-seq single-nucleus transcriptomics. We profiled functionally distinct regions and gene expression dynamics within cell types and across development. The resulting cell atlas demonstrates that the molecular organization of the cerebellar anlage recapitulates cytoarchitecturally distinct regions and developmentally transient cell types that are distinct from the mouse cerebellum. By mapping genes dominant for pediatric and adult neurological disorders onto our dataset, we identify relevant cell types underlying disease mechanisms. These data provide a resource for probing the cellular basis of human cerebellar development and disease
    • …
    corecore