17 research outputs found

    Cerebrovascular Smooth Muscle Cells as the Drivers of Intramural Periarterial Drainage of the Brain

    Get PDF
    The human brain is the organ with the highest metabolic activity but it lacks a traditional lymphatic system responsible for clearing waste products. We have demonstrated that the basement membranes of cerebral capillaries and arteries represent the lymphatic pathways of the brain along which intramural periarterial drainage (IPAD) of soluble metabolites occurs. Failure of IPAD could explain the vascular deposition of the amyloid-beta protein as cerebral amyloid angiopathy (CAA), which is a key pathological feature of Alzheimer\u27s disease. The underlying mechanisms of IPAD, including its motive force, have not been clarified, delaying successful therapies for CAA. Although arterial pulsations from the heart were initially considered to be the motive force for IPAD, they are not strong enough for efficient IPAD. This study aims to unravel the driving force for IPAD, by shifting the perspective of a heart-driven clearance of soluble metabolites from the brain to an intrinsic mechanism of cerebral arteries (e.g., vasomotion-driven IPAD). We test the hypothesis that the cerebrovascular smooth muscle cells, whose cycles of contraction and relaxation generate vasomotion, are the drivers of IPAD. A novel multiscale model of arteries, in which we treat the basement membrane as a fluid-filled poroelastic medium deformed by the contractile cerebrovascular smooth muscle cells, is used to test the hypothesis. The vasomotion-induced intramural flow rates suggest that vasomotion-driven IPAD is the only mechanism postulated to date capable of explaining the available experimental observations. The cerebrovascular smooth muscle cells could represent valuable drug targets for prevention and early interventions in CAA

    Quantitative proteomic profiling of white matter in cases of cerebral amyloid angiopathy reveals upregulation of extracellular matrix proteins and clusterin

    Get PDF
    Aims: Cerebral amyloid angiopathy (CAA) is the accumulation of amyloid beta (Aβ) in the walls of cerebral arterioles, arteries and capillaries. Changes in the white matter in CAA are observed as hyperintensities and dilated perivascular spaces on MRI suggesting impairment of fluid drainage but the pathophysiology behind these changes is poorly understood. We tested the hypothesis that proteins associated with clearance of Aβ peptides are upregulated in the white matter in cases of CAA.Methods: In this study, we compare the quantitative proteomic profile of white matter from post-mortem brains of patients with CAA and age-matched controls in order to gain insight into the cellular processes and key molecules involved in the pathophysiology of CAA.Results: Our proteomic analysis resulted in the profiling of 3,734 proteins (peptide FDR p<0.05). Of these, 189 were differentially expressed in CAA vs. control. Bioinformatics analysis of these proteins showed significant enrichment of proteins related to cell adhesion | cell-matrix interaction, mitochondrial dysfunction and hypoxia. Upregulated proteins in CAA included EMILIN2, COL4A2, TLN1, CLU, HSPG2. Downregulated proteins included DSP, IDE, HBG1.Conclusions: The present study reports an in-depth quantitative proteomic profiling of white matter from patients with CAA, highlighting extracellular matrix proteins and clusterin as key molecules in the pathophysiology of white matter changes in cases of CAA

    Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases

    No full text
    The lymphatic clearance pathways of the brain are different compared to the other organs of the body and have been the subject of heated debates. Drainage of brain extracellular fluids, particularly interstitial fluid (ISF) and cerebrospinal fluid (CSF), is not only important for volume regulation, but also for removal of waste products such as amyloid beta (A?). CSF plays a special role in clinical medicine, as it is available for analysis of biomarkers for Alzheimer’s disease. Despite the lack of a complete anatomical and physiological picture of the communications between the subarachnoid space (SAS) and the brain parenchyma, it is often assumed that A? is cleared from the cerebral ISF into the CSF. Recent work suggests that clearance of the brain mainly occurs during sleep, with a specific role for peri- and para-vascular spaces as drainage pathways from the brain parenchyma. However, the direction of flow, the anatomical structures involved and the driving forces remain elusive, with partially conflicting data in literature. The presence of A? in the glia limitans in Alzheimer’s disease suggests a direct communication of ISF with CSF. Nonetheless, there is also the well-described pathology of cerebral amyloid angiopathy associated with the failure of perivascular drainage of A?. Herein, we review the role of the vasculature and the impact of vascular pathology on the peri- and para-vascular clearance pathways of the brain. The different views on the possible routes for ISF drainage of the brain are discussed in the context of pathological significance

    Cerebrovascular Smooth Muscle Cells as the Drivers of Intramural Periarterial Drainage of the Brain

    Get PDF
    The human brain is the organ with the highest metabolic activity but it lacks a traditional lymphatic system responsible for clearing waste products. We have demonstrated that the basement membranes of cerebral capillaries and arteries represent the lymphatic pathways of the brain along which intramural periarterial drainage (IPAD) of soluble metabolites occurs. Failure of IPAD could explain the vascular deposition of the amyloid-beta protein as cerebral amyloid angiopathy (CAA), which is a key pathological feature of Alzheimer's disease. The underlying mechanisms of IPAD, including its motive force, have not been clarified, delaying successful therapies for CAA. Although arterial pulsations from the heart were initially considered to be the motive force for IPAD, they are not strong enough for efficient IPAD. This study aims to unravel the driving force for IPAD, by shifting the perspective of a heart-driven clearance of soluble metabolites from the brain to an intrinsic mechanism of cerebral arteries (e.g., vasomotion-driven IPAD). We test the hypothesis that the cerebrovascular smooth muscle cells, whose cycles of contraction and relaxation generate vasomotion, are the drivers of IPAD. A novel multiscale model of arteries, in which we treat the basement membrane as a fluid-filled poroelastic medium deformed by the contractile cerebrovascular smooth muscle cells, is used to test the hypothesis. The vasomotion-induced intramural flow rates suggest that vasomotion-driven IPAD is the only mechanism postulated to date capable of explaining the available experimental observations. The cerebrovascular smooth muscle cells could represent valuable drug targets for prevention and early interventions in CAA

    Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Vascular Professional Interest Area (PIA): Cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and retina with age and Alzheimer's disease-Opportunities for Therapy.

    Get PDF
    Two of the key functions of arteries in the brain are (1) the well-recognized supply of blood via the vascular lumen and (2) the emerging role for the arterial walls as routes for the elimination of interstitial fluid (ISF) and soluble metabolites, such as amyloid beta (Aβ), from the brain and retina. As the brain and retina possess no conventional lymphatic vessels, fluid drainage toward peripheral lymph nodes is mediated via transport along basement membranes in the walls of capillaries and arteries that form the intramural peri-arterial drainage (IPAD) system. IPAD tends to fail as arteries age but the mechanisms underlying the failure are unclear. In some people this is reflected in the accumulation of Aβ plaques in the brain in Alzheimer's disease (AD) and deposition of Aβ within artery walls as cerebral amyloid angiopathy (CAA). Knowledge of the dynamics of IPAD and why it fails with age is essential for establishing diagnostic tests for the early stages of the disease and for devising therapies that promote the clearance of Aβ in the prevention and treatment of AD and CAA. This editorial is intended to introduce the rationale that has led to the establishment of the Clearance of Interstitial Fluid (ISF) and CSF (CLIC) group, within the Vascular Professional Interest Area of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment

    3D Reconstruction of the Neurovascular Unit Reveals Differential Loss of Cholinergic Innervation in the Cortex and Hippocampus of the Adult Mouse Brain

    Get PDF
    Increasing evidence supports a role for cerebrovasculature dysfunction in the etiology of Alzheimer’s disease (AD). Blood vessels in the brain are composed of a collection of cells and acellular material that comprise the neurovascular unit (NVU). The NVU in the hippocampus and cortex receives innervation from cholinergic neurons that originate in the basal forebrain. Death of these neurons and their nerve fibers is an early feature of AD. However, the effect of the loss of cholinergic innervation on the NVU is not well characterized. The purpose of this study was to evaluate the effect of the loss of cholinergic innervation of components of the NVU at capillaries, arteries and veins in the hippocampus and cortex. Adult male C57BL/6 mice received an intracerebroventricular injection of the immunotoxin p75NTR mu-saporin to induce the loss of cholinergic neurons. Quadruple labeling immunohistochemistry and 3D reconstruction were carried out to characterize specific points of contact between cholinergic fibers and collagen IV, smooth muscle cells and astrocyte endfeet. Innate differences were observed between vessels of the hippocampus and cortex of control mice, including a greater amount of cholinergic contact with perivascular astrocytes in hippocampal capillaries and a thicker basement membrane in hippocampal veins. Saporin treatment induced a loss of cholinergic innervation at the arterial basement membrane and smooth muscle cells of both the hippocampus and the cortex. In the cortex, there was an additional loss of innervation at the astrocytic endfeet. The current results suggest that cortical arteries are more strongly affected by cholinergic denervation than arteries in the hippocampus. This regional variation may have implications for the etiology of the vascular pathology that develops in AD

    Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases

    Get PDF
    The lymphatic clearance pathways of the brain are different compared to the other organs of the body and have been the subject of heated debates. Drainage of brain extracellular fluids, particularly interstitial fluid (ISF) and cerebrospinal fluid (CSF), is not only important for volume regulation, but also for removal of waste products such as amyloid beta (A?). CSF plays a special role in clinical medicine, as it is available for analysis of biomarkers for Alzheimer’s disease. Despite the lack of a complete anatomical and physiological picture of the communications between the subarachnoid space (SAS) and the brain parenchyma, it is often assumed that A? is cleared from the cerebral ISF into the CSF. Recent work suggests that clearance of the brain mainly occurs during sleep, with a specific role for peri- and para-vascular spaces as drainage pathways from the brain parenchyma. However, the direction of flow, the anatomical structures involved and the driving forces remain elusive, with partially conflicting data in literature. The presence of A? in the glia limitans in Alzheimer’s disease suggests a direct communication of ISF with CSF. Nonetheless, there is also the well-described pathology of cerebral amyloid angiopathy associated with the failure of perivascular drainage of A?. Herein, we review the role of the vasculature and the impact of vascular pathology on the peri- and para-vascular clearance pathways of the brain. The different views on the possible routes for ISF drainage of the brain are discussed in the context of pathological significance

    Modelling cerebral interstitial flows and their failure in Alzheimer's disease

    No full text
    The human brain is the organ with the highest metabolic activity; despite this, it lacks a conventional lymphatic system responsible for clearing metabolic products. Cerebral accumulation of soluble metabolites, such as the amyloid-beta (A) protein, has been associated with Alzheimer's disease, the most common form of dementia. The underlying mechanisms for the clearance of the brain are not completely understood through conventional biological sciences alone. With this in mind, this thesis aims to provide a new perspective by developing novel multi-scale physiologically-realistic models that allow quantitative assessment of previously proposed clearance systems of the brain. The first model investigates the global clearance of soluble A from the brain tissue by accounting for a realistic geometry of the human brain and heterogeneous properties of the brain tissue. Within the model, the relative contributions of different transport mechanisms of A out of the brain tissue are assessed. Insights about physically realistic clearance mechanisms and cerebral regional deposition of A in the brain when clearance fails are provided. The second part of this thesis aims to clarify the motive force for the intramural periarterial drainage (IPAD) of soluble A from the brain. Failure of this clearance mechanism could explain the vascular deposition of A as cerebral amyloid angiopathy, which is almost invariably found in Alzheimers dementia. The motive force of the IPAD process has yet not been clarified, hindering in this way any significant therapeutic progress. Here, a novel hypothesis, namely vasomotion-driven IPAD, is proposed and modelled by designing a novel multi-scale mathematical model of cerebral arteries. The periarterial flow rates yielded by the model suggest that vasomotion-driven IPAD is the only mechanism postulated to date capable of explaining the perivascular clearance of solutes observed experimentally

    Choc anaphylactique et anethésie.Revue de la littérature à partir d'un cas clinique

    No full text
    LE KREMLIN-B.- PARIS 11-BU MĂ©d (940432101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF
    corecore