7 research outputs found

    In Vivo Reprogramming Ameliorates Aging Features in Dentate Gyrus Cells and Improves Memory in Mice

    Get PDF
    Post-translational epigenetic modifications take place in mouse neurons of the dentate gyrus (DG) with age. Here, we report that age-dependent reduction in H3K9 trimethylation (H3K9me3) is prevented by cyclic induction of the Yamanaka factors used for cell reprogramming. Interestingly, Yamanaka factors elevated the levels of migrating cells containing the neurogenic markers doublecortin and calretinin, and the levels of the NMDA receptor subunit GluN2B. These changes could result in an increase in the survival of newborn DG neurons during their maturation and higher synaptic plasticity in mature neurons. Importantly, these cellular changes were accompanied by an improvement in mouse performance in the object recognition test over long time. We conclude that transient cyclic reprogramming in vivo in the central nervous system could be an effective strategy to ameliorate aging of the central nervous system and neurodegenerative diseases

    The trophectoderm acts as a niche for the inner cell mass through C/EBPα-regulated IL-6 signaling

    Get PDF
    Gene regulation; Somatic cell reprogramming; TrophectodermRegulación de genes; Reprogramación de células somáticas; TrofoectodermoRegulació de gens; Reprogramació de cèl·lules somàtiques; TrofectodermaIL-6 has been shown to be required for somatic cell reprogramming into induced pluripotent stem cells (iPSCs). However, how Il6 expression is regulated and whether it plays a role during embryo development remains unknown. Here, we describe that IL-6 is necessary for C/EBPα-enhanced reprogramming of B cells into iPSCs but not for B cell to macrophage transdifferentiation. C/EBPα overexpression activates both Il6 and Il6ra genes in B cells and in PSCs. In embryo development, Cebpa is enriched in the trophectoderm of blastocysts together with Il6, while Il6ra is mostly expressed in the inner cell mass (ICM). In addition, Il6 expression in blastocysts requires Cebpa. Blastocysts secrete IL-6 and neutralization of the cytokine delays the morula to blastocyst transition. The observed requirement of C/EBPα-regulated IL-6 signaling for pluripotency during somatic cell reprogramming thus recapitulates a physiologic mechanism in which the trophectoderm acts as niche for the ICM through the secretion of IL-6.We thank C. Berenguer for help with B cell reprogramming and bone marrow collection; S. Nakagawa and B. Pernaute for advice on pre-implantation embryo culture and manipulation, and Kyle M. Loh for his valuable discussions; the flow cytometry and microscopy units of UPF-CRG for technical assistance; the CRG genomics core facility for sequencing and Graf laboratory members for critical discussions. Work in the laboratory of T.G. was supported by the Spanish Ministry of Economy, Industry and Competitiveness (Plan Estatal PID2019-109354GB-I00), the CRG, AGAUR (SGR 726), and a European Research Council Synergy grant (4D-Genome). M.P.-C. was supported by an FPI fellowship (BES-2016-076900). Work in the laboratory of M.S. was funded by the IRB and by grants from the Spanish Ministry of Economy co-funded by the European Regional Development Fund (SAF2017-82613-R), ERC (ERC-2014-AdG/669622), la Caixa Foundation, and Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement of Catalonia (Grup de Recerca consolidat 2017 SGR 282)

    Effects of Power-Oriented Resistance Training With Heavy vs. Light Loads on Muscle-Tendon Function in Older Adults: A Study Protocol for a Randomized Controlled Trial

    Get PDF
    Background: Power-oriented resistance training (PRT) is one of the most effective exercise programs to counteract neuromuscular and physical function age-related declines. However, the optimal load that maximizes these outcomes or the load-specific adaptations induced on muscle power determinants remain to be better understood. Furthermore, to investigate whether these adaptations are potentially transferred to an untrained limb (i.e., cross-education phenomenon) could be especially relevant during limb-immobilization frequently observed in older people (e.g., after hip fracture). Methods: At least 30 well-functioning older participants (>65 years) will participate in a within-person randomized controlled trial. After an 8-week control period, the effects of two 12-week PRT programs using light vs. heavy loads will be compared using an unilateral exercise model through three study arms (light-load PRT vs. non-exercise; heavy-load PRT vs. non-exercise; and light- vs. heavy- load PRT). Muscle-tendon function, muscle excitation and morphology and physical function will be evaluated to analyze the load-specific effects of PRT in older people. Additionally, the effects of PRT will be examined on a non-exercised contralateral limb. Discussion: Tailored exercise programs are largely demanded given their potentially greater efficiency preventing age-related negative consequences, especially during limb immobilization. This trial will provide evidence supporting the use of light- or heavy-load PRT on older adults depending on individual needs, improving decision making and exercise program efficacy. Clinical Trial Registration: NCT03724461 registration data: October 30, 2018

    RANK links senescence to stemness in the mammary epithelia, delaying tumor onset but increasing tumor aggressiveness

    Get PDF
    Rank signaling enhances stemness in mouse and human mammary epithelial cells (MECs) and mediates mammary tumor initiation. Mammary tumors initiated by oncogenes or carcinogen exposure display high levels of Rank and Rank pathway inhibitors have emerged as a new strategy for breast cancer prevention and treatment. Here, we show that ectopic Rank expression in the mammary epithelia unexpectedly delays tumor onset and reduces tumor incidence in the oncogene-driven Neu and PyMT models. Mechanistically, we have found that ectopic expression of Rank or exposure to Rankl induces senescence, even in the absence of other oncogenic mutations. Rank leads to DNA damage and senescence through p16/p19. Moreover, RANK-induced senescence is essential for Rank-driven stemness, and although initially translates into delayed tumor growth, eventually promotes tumor progression and metastasis. We uncover a dual role for Rank in the mammary epithelia: Rank induces senescence and stemness, delaying tumor initiation but increasing tumor aggressiveness

    Global hyperactivation of enhancers stabilizes human and mouse naïve pluripotency through inhibition of CDK8/19 Mediator kinases

    Get PDF
    Pluripotent stem cells (PSCs) transition between cell states in vitro and reflect developmental changes in the early embryo. PSCs can be stabilized in the naïve state by blocking extracellular differentiation stimuli, particularly FGF-MEK signaling. Here, we report that multiple features of the naïve state in human and mouse PSCs can be recapitulated without affecting FGF-MEK-signaling or global DNA methylation. Mechanistically, chemical inhibition of CDK8 and CDK19 kinases removes their ability to repress the Mediator complex at enhancers. Thus CDK8/19 inhibition increases Mediator-driven recruitment of RNA Pol II to promoters and enhancers. This efficiently stabilizes the naïve transcriptional program and confers resistance to enhancer perturbation by BRD4 inhibition. Moreover, naïve pluripotency during embryonic development coincides with a reduction in CDK8/19. We conclude that global hyperactivation of enhancers drives naïve pluripotency, and this can be achieved in vitro by inhibiting CDK8/19 kinase activity. These principles may apply to other contexts of cellular plasticity

    Mechanical performance of gelatin fiber mesh scaffolds reinforced with nano-hydroxyapatite under bone damage mechanisms

    No full text
    Engineered tissues scaffolds should be design to mimic, at least partially, the extracellular matrix (ECM) in native tissues. Our scaffold's design satisfies, important challenges among the implant architecture requirements: (i) a fiber mesh entanglement mimicking physical attributes of natural ECM; (ii) a nanostructure surface roughness and chemical cues to increase the interaction with host tissue; (iii) a hydrolytic and enzymatic biodegradability; (iv) an open interconnected macroporosity to promote highly permeability and (v) a tensile stability under mechanical damage mechanisms. These properties are very important for cell seeding, adhesion, vascularization, new ECM formation and the subsequent tissue regeneration.Fil: Sartuqui, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: D'elía, Noelia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Ercoli, Daniel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: De Alcazar, Daniel Sánchez. CIC BiomaGUNE; EspañaFil: Cortajarena, Aitziber L.. CIC BiomaGUNE; EspañaFil: Messina, Paula Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentin
    corecore