303 research outputs found

    ECG Quality Assessment via Deep Learning and Data Augmentation

    Full text link
    [EN] Quality assessment of ECG signals acquired with wearable devices is essential to avoid misdiagnosis of some cardiac disorders. For that purpose, novel deep learning algorithms have been recently proposed. However, training of these methods require large amount of data and public databases with annotated ECG samples are limited. Hence, the present work aims at validating the usefulness of a well-known data augmentation approach in this context of ECG quality assessment. Precisely, classification between high- and low-quality ECG excerpts achieved by a common convolutional neural network (CNN) trained on two databases has been compared. On the one hand, 2,000 5 second-length ECG excerpts were initially selected from a freely available database. Half of the segments were extracted from noisy ECG recordings and the other half from high-quality signals. On the other hand, using a data augmentation approach based on time-scale modification, noise addition, and pitch shifting of the original noisy ECG experts, 1,000 additional low-quality intervals were generated. These surrogate noisy signals and the original highquality ones formed the second dataset. The results for both cases were compared using a McNemar test and no statistically significant differences were noticed, thus suggesting that the synthesized noisy signals could be used for reliable training of CNN-based ECG quality indices.Huerta, Á.; Martínez-Rodrigo, A.; Rieta, JJ.; Alcaraz, R. (2021). ECG Quality Assessment via Deep Learning and Data Augmentation. 1-4. https://doi.org/10.22489/CinC.2021.2431

    Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition

    Get PDF
    Distress is a critical problem in developed societies given its long-term negative effects on physical and mental health. The interest in studying this emotion has notably increased during last years, being electroencephalography (EEG) signals preferred over other physiological variables in this research field. In addition, the non-stationary nature of brain dynamics has impulsed the use of non-linear metrics, such as symbolic entropies in brain signal analysis. Thus, the influence of time-lag on brain patterns assessment has not been tested. Hence, in the present study two permutation entropies denominated Delayed Permutation Entropy and Permutation Min-Entropy have been computed for the first time at different time-lags to discern between emotional states of calmness and distress from EEG signals. Moreover, a number of curve-related features were also calculated to assess brain dynamics across different temporal intervals. Complementary information among these variables was studied through sequential forward selection and 10-fold cross-validation approaches. According to the results obtained, the multi-lag entropy analysis has been able to reveal new significant insights so far undiscovered, thus notably improving the process of distress recognition from EEG recordings.Fil: Martínez Rodrigo, Arturo. Universidad de Castilla-La Mancha; EspañaFil: García Martínez, Beatriz. Universidad de Castilla-La Mancha; EspañaFil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; ArgentinaFil: Alcaraz, Raúl. Universidad de Castilla-La Mancha; EspañaFil: Fernández Caballero, Antonio. Biomedical Research Networking Centre in Mental Health; España. Universidad de Castilla-La Mancha; Españ

    The Contribution of Nonlinear Methods in the Understanding of Atrial Fibrillation

    Get PDF
    This work was supported by the projects TEC2010–20633 from the Spanish Ministry of Science and Innovation and PPII11–0194–8121 and PII1C09–0036–3237 from Junta de Comunidades de Castilla-La Mancha.Alcaraz Martínez, R.; Rieta Ibañez, JJ. (2013). The Contribution of Nonlinear Methods in the Understanding of Atrial Fibrillation. En Atrial Fibrillation - Mechanisms and Treatment. InTech. 181-204. https://doi.org/10.5772/53407S18120

    Global atmospheric dynamics investigated by using Hilbert Frequency Analysis

    Get PDF
    El artículo pertenece al número especial: Applications of Information Theory in the GeosciencesThe Hilbert transform is a well-known tool of time series analysis that has been widely used to investigate oscillatory signals that resemble a noisy periodic oscillation, because it allows instantaneous phase and frequency to be estimated, which in turn uncovers interesting properties of the underlying process that generates the signal. Here we use this tool to analyze atmospheric data: we consider daily-averaged Surface Air Temperature (SAT) time series recorded over a regular grid of locations covering the Earth’s surface. From each SAT time series, we calculate the instantaneous frequency time series by considering the Hilbert analytic signal. The properties of the obtained frequency data set are investigated by plotting the map of the average frequency and the map of the standard deviation of the frequency fluctuations. The average frequency map reveals well-defined large-scale structures: in the extra-tropics, the average frequency in general corresponds to the expected one-year period of solar forcing, while in the tropics, a different behaviour is found, with particular regions having a faster average frequency. In the standard deviation map, large-scale structures are also found, which tend to be located over regions of strong annual precipitation. Our results demonstrate that Hilbert analysis of SAT time-series uncovers meaningful information, and is therefore a promising tool for the study of other climatological variables

    Alteration of the P-wave non-linear dynamics near the onset of paroxysmal atrial fibrillation

    Get PDF
    The analysis of P-wave variability from the electrocardiogram (ECG) has been suggested as an early predictor of the onset of paroxysmal atrial fibrillation (PAP). Hence, a preventive treatment could be used to avoid the loss of normal sinus rhythm, thus minimising health risks and improving the patient's quality of life. In these previous studies the variability of different temporal and morphological P-wave features has been only analysed in a linear fashion. However, the electrophysiological alteration occurring in the atria before the onset of PAF has to be considered as an inherently complex, chaotic and non-stationary process. This work analyses the presence of non-linear dynamics in the P-wave progression before the onset of PAF through the application of the central tendency measure (CTM), which is a non-linear metric summarising the degree of variability in a time series. Two hour-length ECG intervals just before the arrhythmia onset belonging to 46 different PAF patients were analysed. In agreement with the invasively observed inhomogeneous atrial conduction preceding the onset of PAF, CTM for all the considered P-wave features showed higher variability when the arrhythmia was closer to its onset. A diagnostic accuracy around 80% to discern between ECG segments far from PAF and close to PAP was obtained with the CTM of the metrics considered. This result was similar to previous P-wave variability methods based on linear approaches. However, the combination of linear and non-linear methods with a decision tree improved considerably their discriminant ability up to 90%, thus suggesting that both dynamics could coexist at the same time in the fragmented depolarisation of the atria preceding the arrhythmia. (C) 2015 IPEM. Published by Elsevier Ltd. All rights reserved.This work was supported by the projects TEC2014-52250-R from the Spanish Ministry of Economy Competitiveness and PPII-2014-026-P from Junta de Comunidades de Castilla-La Mancha.Martinez, A.; Abasolo, D.; Alcaraz, R.; Rieta, JJ. (2015). Alteration of the P-wave non-linear dynamics near the onset of paroxysmal atrial fibrillation. Medical Engineering and Physics. 37(7):692-697. https://doi.org/10.1016/j.medengphy.2015.03.021S69269737

    Improved Discrimination Between Healthy and Hypertensive Individuals Combining Photoplethysmography and Electrocardiography

    Full text link
    [EN] Cardiovascular disease is one of the leading causes of death, with hypertension (HT) being its main risk factor. Its complications can be avoided with early treatment, but since these patients do not present any symptoms, HT is often detected at very advanced stages. This work presents a model for estimating blood pressure (BP) from electrocardiographic (ECG) and photoplethysmographic (PPG) signals, which can be easily obtained by means of wearable continuous monitoring devices. ECG, PPG and BP recordings from 86 patients were analyzed.A total of 34 standard and new features based on previous works were defined, such as pulse arrival times (PAT), and morphological characteristics of PPG signal. 37 classification models, ranging from Logistic Regression, Support Vector Machines (SVM), Nearest Neighbors, Naive Bayes or Coarse Trees were trained to compare discrimination results. The classifier that provided the highest performance when comparing normotensive patients with prehypertensive and hypertensive patients were Coarse Tree, providing an F1 score of 85.44% (Se of 86.27% and Sp of 77.14%). The use of PPG and ECG features has successfully discriminated between healthy and hypertensive individuals and, thus, could be used to detect HT by embedding these techniques in wearable devices.Research supported by grants DPI2017¿83952¿C3 from MINECO/AEI/FEDER UE, SBPLY/17/180501/000411 from JCCLM and AICO/2021/286 from GVA.Cano, J.; Hornero, F.; Quesada, A.; Martínez-Rodrigo, A.; Alcaraz, R.; Rieta, JJ. (2021). Improved Discrimination Between Healthy and Hypertensive Individuals Combining Photoplethysmography and Electrocardiography. 1-4. https://doi.org/10.22489/CinC.2021.0301

    A Deep Learning Approach for Featureless Robust Quality Assessment of Intermittent Atrial Fibrillation Recordings from Portable and Wearable Devices

    Full text link
    [EN] Atrial fibrillation (AF) is the most common heart rhythm disturbance in clinical practice. It often starts with asymptomatic and very short episodes, which are extremely difficult to detect without long-term monitoring of the patient's electrocardiogram (ECG). Although recent portable and wearable devices may become very useful in this context, they often record ECG signals strongly corrupted with noise and artifacts. This impairs automatized ulterior analyses that could only be conducted reliably through a previous stage of automatic identification of high-quality ECG intervals. So far, a variety of techniques for ECG quality assessment have been proposed, but poor performances have been reported on recordings from patients with AF. This work introduces a novel deep learning-based algorithm to robustly identify high-quality ECG segments within the challenging environment of single-lead recordings alternating sinus rhythm, AF episodes and other rhythms. The method is based on the high learning capability of a convolutional neural network, which has been trained with 2-D images obtained when turning ECG signals into wavelet scalograms. For its validation, almost 100,000 ECG segments from three different databases have been analyzed during 500 learning-testing iterations, thus involving more than 320,000 ECGs analyzed in total. The obtained results have revealed a discriminant ability to detect high-quality and discard low-quality ECG excerpts of about 93%, only misclassifying around 5% of clean AF segments as noisy ones. In addition, the method has also been able to deal with raw ECG recordings, without requiring signal preprocessing or feature extraction as previous stages. Consequently, it is particularly suitable for portable and wearable devices embedding, facilitating early detection of AF as well as other automatized diagnostic facilities by reliably providing high-quality ECG excerpts to further processing stages.This research has been supported by grants DPI2017-83952-C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/000411 from Junta de Comunidades de Castilla-La Mancha and AICO/2019/036 from Generalitat Valenciana.Huerta Herraiz, Á.; Martínez-Rodrigo, A.; Bertomeu-González, V.; Quesada, A.; Rieta, JJ.; Alcaraz, R. (2020). A Deep Learning Approach for Featureless Robust Quality Assessment of Intermittent Atrial Fibrillation Recordings from Portable and Wearable Devices. Entropy. 22(7):1-17. https://doi.org/10.3390/e22070733S117227Lippi, G., Sanchis-Gomar, F., & Cervellin, G. (2020). Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. International Journal of Stroke, 16(2), 217-221. doi:10.1177/1747493019897870Krijthe, B. P., Kunst, A., Benjamin, E. J., Lip, G. Y. H., Franco, O. H., Hofman, A., … Heeringa, J. (2013). Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. European Heart Journal, 34(35), 2746-2751. doi:10.1093/eurheartj/eht280Colilla, S., Crow, A., Petkun, W., Singer, D. E., Simon, T., & Liu, X. (2013). Estimates of Current and Future Incidence and Prevalence of Atrial Fibrillation in the U.S. Adult Population. The American Journal of Cardiology, 112(8), 1142-1147. doi:10.1016/j.amjcard.2013.05.063Khoo, C. W., Krishnamoorthy, S., Lim, H. S., & Lip, G. Y. H. (2012). Atrial fibrillation, arrhythmia burden and thrombogenesis. International Journal of Cardiology, 157(3), 318-323. doi:10.1016/j.ijcard.2011.06.088Warmus, P., Niedziela, N., Huć, M., Wierzbicki, K., & Adamczyk-Sowa, M. (2020). Assessment of the manifestations of atrial fibrillation in patients with acute cerebral stroke – a single-center study based on 998 patients. Neurological Research, 42(6), 471-476. doi:10.1080/01616412.2020.1746508Sposato, L. A., Cipriano, L. E., Saposnik, G., Vargas, E. R., Riccio, P. M., & Hachinski, V. (2015). Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis. The Lancet Neurology, 14(4), 377-387. doi:10.1016/s1474-4422(15)70027-xSchotten, U., Dobrev, D., Platonov, P. G., Kottkamp, H., & Hindricks, G. (2016). Current controversies in determining the main mechanisms of atrial fibrillation. Journal of Internal Medicine, 279(5), 428-438. doi:10.1111/joim.12492Ferrari, R., Bertini, M., Blomstrom-Lundqvist, C., Dobrev, D., Kirchhof, P., Pappone, C., … Vicedomini, G. G. (2016). An update on atrial fibrillation in 2014: From pathophysiology to treatment. International Journal of Cardiology, 203, 22-29. doi:10.1016/j.ijcard.2015.10.089Meyre, P., Blum, S., Berger, S., Aeschbacher, S., Schoepfer, H., Briel, M., … Conen, D. (2019). Risk of Hospital Admissions in Patients With Atrial Fibrillation: A Systematic Review and Meta-analysis. Canadian Journal of Cardiology, 35(10), 1332-1343. doi:10.1016/j.cjca.2019.05.024Van Wagoner, D. R., Piccini, J. P., Albert, C. M., Anderson, M. E., Benjamin, E. J., Brundel, B., … Wehrens, X. H. T. (2015). Progress toward the prevention and treatment of atrial fibrillation: A summary of the Heart Rhythm Society Research Forum on the Treatment and Prevention of Atrial Fibrillation, Washington, DC, December 9–10, 2013. Heart Rhythm, 12(1), e5-e29. doi:10.1016/j.hrthm.2014.11.011De Vos, C. B., Pisters, R., Nieuwlaat, R., Prins, M. H., Tieleman, R. G., Coelen, R.-J. S., … Crijns, H. J. G. M. (2010). Progression From Paroxysmal to Persistent Atrial Fibrillation. Journal of the American College of Cardiology, 55(8), 725-731. doi:10.1016/j.jacc.2009.11.040SCHUCHERT, A., BEHRENS, G., & MEINERTZ, T. (1999). Impact of Long-Term ECG Recording on the Detection of Paroxysmal Atrial Fibrillation in Patients After an Acute Ischemic Stroke. Pacing and Clinical Electrophysiology, 22(7), 1082-1084. doi:10.1111/j.1540-8159.1999.tb00574.xPagola, J., Juega, J., Francisco-Pascual, J., Moya, A., Sanchis, M., Bustamante, A., … Arenillas, J. F. (2018). Yield of atrial fibrillation detection with Textile Wearable Holter from the acute phase of stroke: Pilot study of Crypto-AF registry. International Journal of Cardiology, 251, 45-50. doi:10.1016/j.ijcard.2017.10.063Luong, D. T., Ha, N. T., & Thuan, N. D. (2019). Android Smart Phones Application in Tele-monitoring Electrocardiogram (ECG). American Journal of Biomedical Sciences, 15-21. doi:10.5099/aj190100015Haverkamp, H. T., Fosse, S. O., & Schuster, P. (2019). Accuracy and usability of single-lead ECG from smartphones - A clinical study. Indian Pacing and Electrophysiology Journal, 19(4), 145-149. doi:10.1016/j.ipej.2019.02.006Nagai, S., Anzai, D., & Wang, J. (2017). Motion artefact removals for wearable ECG using stationary wavelet transform. Healthcare Technology Letters, 4(4), 138-141. doi:10.1049/htl.2016.0100Satija, U., Ramkumar, B., & Manikandan, M. S. (2018). A Review of Signal Processing Techniques for Electrocardiogram Signal Quality Assessment. IEEE Reviews in Biomedical Engineering, 11, 36-52. doi:10.1109/rbme.2018.2810957Aboukhalil, A., Nielsen, L., Saeed, M., Mark, R. G., & Clifford, G. D. (2008). Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform. Journal of Biomedical Informatics, 41(3), 442-451. doi:10.1016/j.jbi.2008.03.003Bashar, S. K., Ding, E., Walkey, A. J., McManus, D. D., & Chon, K. H. (2019). Noise Detection in Electrocardiogram Signals for Intensive Care Unit Patients. IEEE Access, 7, 88357-88368. doi:10.1109/access.2019.2926199Yoon, D., Lim, H. S., Jung, K., Kim, T. Y., & Lee, S. (2019). Deep Learning-Based Electrocardiogram Signal Noise Detection and Screening Model. Healthcare Informatics Research, 25(3), 201. doi:10.4258/hir.2019.25.3.201Oster, J., Behar, J., Sayadi, O., Nemati, S., Johnson, A. E. W., & Clifford, G. D. (2015). Semisupervised ECG Ventricular Beat Classification With Novelty Detection Based on Switching Kalman Filters. IEEE Transactions on Biomedical Engineering, 62(9), 2125-2134. doi:10.1109/tbme.2015.2402236Levkov, C., Mihov, G., Ivanov, R., Daskalov, I., Christov, I., & Dotsinsky, I. (2005). Removal of power-line interference from the ECG: a review of the subtraction procedure. BioMedical Engineering OnLine, 4(1). doi:10.1186/1475-925x-4-50Luo, S., & Johnston, P. (2010). A review of electrocardiogram filtering. Journal of Electrocardiology, 43(6), 486-496. doi:10.1016/j.jelectrocard.2010.07.007Martínez, A., Alcaraz, R., & Rieta, J. J. (2010). Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiological Measurement, 31(11), 1467-1485. doi:10.1088/0967-3334/31/11/005Manikandan, M. S., & Ramkumar, B. (2014). Straightforward and robust QRS detection algorithm for wearable cardiac monitor. Healthcare Technology Letters, 1(1), 40-44. doi:10.1049/htl.2013.0019Satija, U., Ramkumar, B., & Manikandan, M. S. (2018). An automated ECG signal quality assessment method for unsupervised diagnostic systems. Biocybernetics and Biomedical Engineering, 38(1), 54-70. doi:10.1016/j.bbe.2017.10.002Satija, U., Ramkumar, B., & Manikandan, M. S. (2018). Automated ECG Noise Detection and Classification System for Unsupervised Healthcare Monitoring. IEEE Journal of Biomedical and Health Informatics, 22(3), 722-732. doi:10.1109/jbhi.2017.2686436Zhang, Q., Fu, L., & Gu, L. (2019). A Cascaded Convolutional Neural Network for Assessing Signal Quality of Dynamic ECG. Computational and Mathematical Methods in Medicine, 2019, 1-12. doi:10.1155/2019/7095137Xu, X., Wei, S., Ma, C., Luo, K., Zhang, L., & Liu, C. (2018). Atrial Fibrillation Beat Identification Using the Combination of Modified Frequency Slice Wavelet Transform and Convolutional Neural Networks. Journal of Healthcare Engineering, 2018, 1-8. doi:10.1155/2018/2102918Al Rahhal, M. M., Bazi, Y., Al Zuair, M., Othman, E., & BenJdira, B. (2018). Convolutional Neural Networks for Electrocardiogram Classification. Journal of Medical and Biological Engineering, 38(6), 1014-1025. doi:10.1007/s40846-018-0389-7He, R., Wang, K., Zhao, N., Liu, Y., Yuan, Y., Li, Q., & Zhang, H. (2018). Automatic Detection of Atrial Fibrillation Based on Continuous Wavelet Transform and 2D Convolutional Neural Networks. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01206Yildirim, O., Talo, M., Ay, B., Baloglu, U. B., Aydin, G., & Acharya, U. R. (2019). Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart rate signals. Computers in Biology and Medicine, 113, 103387. doi:10.1016/j.compbiomed.2019.103387SINGH, S. A., & MAJUMDER, S. (2019). A NOVEL APPROACH OSA DETECTION USING SINGLE-LEAD ECG SCALOGRAM BASED ON DEEP NEURAL NETWORK. Journal of Mechanics in Medicine and Biology, 19(04), 1950026. doi:10.1142/s021951941950026xByeon, Y.-H., Pan, S.-B., & Kwak, K.-C. (2019). Intelligent Deep Models Based on Scalograms of Electrocardiogram Signals for Biometrics. Sensors, 19(4), 935. doi:10.3390/s19040935Clifford, G., Liu, C., Moody, B., Lehman, L., Silva, I., Li, Q., … Mark, R. (2017). AF Classification from a Short Single Lead ECG Recording: the Physionet Computing in Cardiology Challenge 2017. 2017 Computing in Cardiology Conference (CinC). doi:10.22489/cinc.2017.065-469Redmond, S. J., Xie, Y., Chang, D., Basilakis, J., & Lovell, N. H. (2012). Electrocardiogram signal quality measures for unsupervised telehealth environments. Physiological Measurement, 33(9), 1517-1533. doi:10.1088/0967-3334/33/9/1517Li, T., & Zhou, M. (2016). ECG Classification Using Wavelet Packet Entropy and Random Forests. Entropy, 18(8), 285. doi:10.3390/e18080285Khorrami, H., & Moavenian, M. (2010). A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification. Expert Systems with Applications, 37(8), 5751-5757. doi:10.1016/j.eswa.2010.02.033Lyon, A., Mincholé, A., Martínez, J. P., Laguna, P., & Rodriguez, B. (2018). Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances. Journal of The Royal Society Interface, 15(138), 20170821. doi:10.1098/rsif.2017.0821Mincholé, A., & Rodriguez, B. (2019). Artificial intelligence for the electrocardiogram. Nature Medicine, 25(1), 22-23. doi:10.1038/s41591-018-0306-1Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27-48. doi:10.1016/j.neucom.2015.09.116Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. doi:10.1145/3065386Li, Q., Rajagopalan, C., & Clifford, G. D. (2014). A machine learning approach to multi-level ECG signal quality classification. Computer Methods and Programs in Biomedicine, 117(3), 435-447. doi:10.1016/j.cmpb.2014.09.002Zhao, Z., & Zhang, Y. (2018). SQI Quality Evaluation Mechanism of Single-Lead ECG Signal Based on Simple Heuristic Fusion and Fuzzy Comprehensive Evaluation. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.00727Moeyersons, J., Smets, E., Morales, J., Villa, A., De Raedt, W., Testelmans, D., … Varon, C. (2019). Artefact detection and quality assessment of ambulatory ECG signals. Computer Methods and Programs in Biomedicine, 182, 105050. doi:10.1016/j.cmpb.2019.105050Clifford, G. D., Behar, J., Li, Q., & Rezek, I. (2012). Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiological Measurement, 33(9), 1419-1433. doi:10.1088/0967-3334/33/9/1419Orphanidou, C., Bonnici, T., Charlton, P., Clifton, D., Vallance, D., & Tarassenko, L. (2014). Signal Quality Indices for the Electrocardiogram and Photoplethysmogram: Derivation and Applications to Wireless Monitoring. IEEE Journal of Biomedical and Health Informatics, 1-1. doi:10.1109/jbhi.2014.2338351Hayn, D., Jammerbund, B., & Schreier, G. (2012). QRS detection based ECG quality assessment. Physiological Measurement, 33(9), 1449-1461. doi:10.1088/0967-3334/33/9/1449Casey, S., Avalos, G., & Dowling, M. (2018). Critical care nurses’ knowledge of alarm fatigue and practices towards alarms: A multicentre study. Intensive and Critical Care Nursing, 48, 36-41. doi:10.1016/j.iccn.2018.05.004Nattel, S., Guasch, E., Savelieva, I., Cosio, F. G., Valverde, I., Halperin, J. L., … Camm, A. J. (2014). Early management of atrial fibrillation to prevent cardiovascular complications. European Heart Journal, 35(22), 1448-1456. doi:10.1093/eurheartj/ehu028Zhao, Z., Liu, C., Li, Y., Li, Y., Wang, J., Lin, B.-S., & Li, J. (2019). Noise Rejection for Wearable ECGs Using Modified Frequency Slice Wavelet Transform and Convolutional Neural Networks. IEEE Access, 7, 34060-34067. doi:10.1109/access.2019.2900719Petrėnas, A., Marozas, V., & Sörnmo, L. (2015). Low-complexity detection of atrial fibrillation in continuous long-term monitoring. Computers in Biology and Medicine, 65, 184-191. doi:10.1016/j.compbiomed.2015.01.01

    Single-lead electrocardiogram quality assessment in the context of paroxysmal atrial fibrillation through phase space plots

    Get PDF
    [EN] Current wearable electrocardiogram (ECG) recording systems have great potential to revolutionize early diagnosis of paroxysmal atrial fibrillation (AF). They are able to continuously acquire an ECG signal for long weeks and then increase the probability of detecting first brief, intermittent signs of the arrhythmia. However, the recorded signal is often broadly corrupted by noise and artifacts, and accurate assessment of its quality to avoid automated misdiagnosis and false alarms of AF is still an unsolved challenge. In this context, the present work is pioneer in exploring the usefulness of transforming the single-lead ECG signal into two common phase space (PS) representations, such as the Poincare plot and the first order difference graph, for evaluation of its quality. Several machine and deep learning models fed with features and images derived from these PS portraits reported a better performance than well-known previous methods, even when they were trained and validated on two separate databases. Indeed, in binary classification of high- and low-quality ECG excerpts, the generated PS-based algorithms reported a discriminant power greater than 85%, misclassifying less than 20% of high-quality AF episodes and non -normal rhythms as noisy excerpts. Moreover, because both PS reconstructions do not require any mathematical transformation, these algorithms also spent much less time in classifying each ECG excerpt in validation and testing stages than previous methods. As a consequence, ECG transformation to both PS portraits enables novel, simple, effective, and computational low-cost techniques, based both on machine and deep learning classifiers, for ECG quality assessment.This research has received financial support from Daiichi Sankyo SLU and from public grants PID2021-00X128525-IV0, PID2021-12380 4OB-I00, and TED2021-130935B-I00 of the Spanish Government 10.13039/501100011033 jointly with the European Regional Development Fund (EU) , SBPLY/21/180501/000186 from Junta de Comunidades de Castilla-La Mancha, Spain, and AICO/2021/286 from Generalitat Valenciana.Huerta, A.; Martínez-Rodrigo, A.; Bertomeu-González, V.; Ayo-Martin, O.; Rieta, JJ.; Alcaraz, R. (2024). Single-lead electrocardiogram quality assessment in the context of paroxysmal atrial fibrillation through phase space plots. Biomedical Signal Processing and Control. 91. https://doi.org/10.1016/j.bspc.2023.1059209
    corecore