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ARTICLE INFO ABSTRACT

Keywords: Current wearable electrocardiogram (ECG) recording systems have great potential to revolutionize early
Signal quality assessment diagnosis of paroxysmal atrial fibrillation (AF). They are able to continuously acquire an ECG signal for long
Paroxysmal atrial fibrillation weeks and then increase the probability of detecting first brief, intermittent signs of the arrhythmia. However,

Phase space portraits
Machine learning classifiers
Deep learning algorithms

the recorded signal is often broadly corrupted by noise and artifacts, and accurate assessment of its quality to
avoid automated misdiagnosis and false alarms of AF is still an unsolved challenge. In this context, the present
work is pioneer in exploring the usefulness of transforming the single-lead ECG signal into two common phase
space (PS) representations, such as the Poincaré plot and the first order difference graph, for evaluation of
its quality. Several machine and deep learning models fed with features and images derived from these PS
portraits reported a better performance than well-known previous methods, even when they were trained and
validated on two separate databases. Indeed, in binary classification of high- and low-quality ECG excerpts, the
generated PS-based algorithms reported a discriminant power greater than 85%, misclassifying less than 20% of
high-quality AF episodes and non-normal rhythms as noisy excerpts. Moreover, because both PS reconstructions
do not require any mathematical transformation, these algorithms also spent much less time in classifying each
ECG excerpt in validation and testing stages than previous methods. As a consequence, ECG transformation
to both PS portraits enables novel, simple, effective, and computational low-cost techniques, based both on
machine and deep learning classifiers, for ECG quality assessment.

1. Introduction arrhythmia presents a recursive nature, which fosters its perpetuation.
Although nascent arrhythmic episodes are often sporadic and of a

Cardiovascular disorders (CVDs) are the most common non- short length, their frequency and duration increase over the time [6].
communicable diseases worldwide, being responsible for about 18 mil-
lion annual deaths (i.e., more than 31% of all deaths globally) [1,2]. A
prevalent cause of these diseases is the presence of cardiac arrhythmias,
which are mainly featured by diverse conditions of irregular heart
rhythm [3]. Among these cardiac alterations, atrial fibrillation (AF) is

Hence, the early detection of these paroxysmal events plays a key
role to manage successfully AF treatment, reduce its perpetuation, and
limit its prevalence [6]. However, current clinical guidelines demand
AF documentation on a sufficient quality electrocardiogram (ECG)

the most frequent, provoking high morbidity and triggering ischemic recording before administration of any treatment [7]. Although current
stroke [4]. Despite the huge recent technological advances in the ambulatory systems are able to acquire an ECG signal with several days
field of healthcare, AF prevalence continues to grow in the developed in length, a longer recording time increases the potential of detecting
countries. Indeed, this arrhythmia is today considered one of the most the intermittent arrhythmic events and providing an earlier diagnosis
important epidemics in the 21st century and involves a major economic of AF [7]. Furthermore, conventional ECG devices involve burdensome

burden to the society [4].
So far, the mechanisms triggering and supporting AF are not fully
known, leading current therapies to be suboptimal [5]. Moreover, the

wires and adhesive electrodes, which interfere with the user’s daily
activities and provoke skin irritation.
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Some recent wearable systems overcome these problems by con-
tinuously acquiring an ECG signal for long weeks or months in a
comfortable, unobtrusive way for the patient [8]. They present the po-
tential to revolutionize the diagnosis and management of AF and other
CVDs, as they are able to detect these pathologies without altering the
patient’s daily life [8]. However, the signal recorded by these devices
in a non-resting state is often contaminated by strong artifacts and
noises, which can seriously mask the ECG morphology and confound
the physicians’ diagnosis [9,10]. Hence, bearing the large amounts of
captured ECG data in mind, automated and accurate signal quality
assessment for identification and rejection of the low-quality excerpts
before every diagnosis is essential to reach a massive use of these
wearable ECG acquisition systems in daily clinical practice [9-11].

In the last years, a wide variety of algorithms based on traditional
machine learning and modern deep learning approaches have been
proposed for quality evaluation of the standard 12-lead ECG [9,10].
However, many are not applicable to the ECG recording acquired
by wearable systems, as it only contains a reduced number of leads
(often among 1 and 3 leads). Nonetheless, in the context of single-
lead ECG quality assessment, most of the published methods are still
based on the same supervised learning concepts, and two large groups
of algorithms can be identified. On the one hand, some are based on
merging hand-crafted features with common machine learning classi-
fiers, such as support vector machine (SVM), decision tree, and random
forest, among others [9,10]. In this case, statistical, morphological, and
time—frequency domain features are mainly derived from the raw or
preprocessed ECG signal or from its delineated fiducial points [9,10].
Although they have reported promising results when short, resting ECG
signals are assessed, their performance is often degraded on long-term
ECG signals obtained by wearable systems in dynamic, ever-changing
environments [9,10].

On the other hand, deep learning-based schemes have been more
recently proposed for ECG quality assessment. In this case, manual
selection of ECG features is not required, thus reducing subjectivity
and redundant information among the variables. These algorithms
are mainly based on convolutional neural networks (CNNs), which
usually achieve more abstract, low-level ECG representations, and con-
sequently better classification between high- and low-quality excerpts,
than the previous machine learning methods [11,12]. Given the excel-
lent results obtained in the field of image processing and computer
vision [13], two-dimensional (2-D) CNN schemes have been mostly
used. Moreover, the analysis of ECG-based images has proven ad-
ditional advantages regarding the study of original one-dimensional
(1-D) signals, such as identification of a richer set of features, easier
application of data augmentation, and longer insensitivity to some
characteristics of ECG acquisition process, such as sampling rate, am-
plitude, and intrinsic noise [14]. To turn the ECG signal into a 2-D
image, diverse kinds of time-frequency transformations have been
mainly considered to date, including short-time Fourier transform [15],
continuous Wavelet transform [12], modified frequency slice Wavelet
transform [16], and Stockwell transform [17], among others.

Although these time-frequency analyses have proven to be effective
to represent non-stationary and time-varying physiological signals and
noises [18], they are only based on linear concepts. Hence, other ap-
proaches more optimized to visualize and feature nonlinear, complex,
and chaotic dynamics in a time series, such as diverse phase space (PS)
representations, could reveal useful novel information to identify low-
quality ECG excerpts. Indeed, some CNN schemes fed with PS-based
images have already provided promising results in diverse ECG-based
scenarios, e.g., in the assessment of patient’s eligibility for cardioverter
implantation [19], or in biometric authentication [20]. However, the
use of diverse PS portraits has not still been thoroughly explored in the
context of ECG quality assessment. Hence, the main goal of the present
work is to analyze for the first time whether ECG transformation into
two common PS graphs, such as the Poincaré plot (PP) and first order
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difference graph (FODG), might be helpful in quality evaluation of long-
term, single-lead ECG signals, when both machine learning and deep
learning classifiers are used.

All the classification models will be generated and assessed in the
challenging context of paroxysmal AF. Although several previous algo-
rithms, both based on machine learning and deep learning approaches,
have shown to successfully work on long-term ECG recordings acquired
from healthy subjects, their performance has proven to be much more
limited on signals obtained from patients with such an intermittent
arrhythmia [15,21]. The presence of paroxysmal AF episodes often pro-
vokes significant changes in the ECG signal, resembling its waveform
and time—frequency features to the most common transient noise found
during the acquisition procedure [22]. In fact, this kind of noise is the
most relevant source of false alarms of AF in current continuous ECG
monitoring, both by insertable Holters in dynamic environments [23]
and by bedside monitors in intensive care units [24]. These false
alarms account for more than 70% of the total detected events in both
cases [24], and therefore automated quality assessment of long-term,
single-lead ECG signals is a challenge of great significance for accurate
diagnosis of paroxysmal AF using wearable devices [25].

2. Databases

Two separate databases were analyzed to consider a wide variety
of ECG morphologies, artifacts and noises. For each dataset, the ECG
signals were obtained within different contexts, as well as making use
of diverse wearable acquisition systems. On the one hand, a proprietary
database (PDB) was firstly enrolled. This consisted of 2 hour-length,
single-lead ECG intervals extracted from much longer recordings ob-
tained from 25 AF patients (12 women and 13 men, aged between 52
and 68 years), who presented intermittent arrhythmic episodes over
time. After catheter ablation, they were continuously monitored for
several weeks through a textile wearable Holter system (Nuubo™),
placed on the thorax and capturing an ECG signal with a frequency of
250 Hz and a resolution of 12 bits over a dynamic range of +5 mV.
All the patients gave consent to be monitored, and the study was
approved by the Ethical Review Board of Hospital Universitario San
Juan de Alicante (Protocol Number UGP-14-219). The detection of
paroxysmal AF episodes was tackled by an automatic algorithm [26]
and visually supervised by two expert physicians. Similarly, noisy and
clean ECG segments were manually labeled by two expert reviewers
on the basis of their ability to detect R-peaks. Those ECG excerpts
where the reviewers were able to unequivocally identify R-peaks were
labeled as high-quality, whereas the remaining were marked as low-
quality. Arrhythmias other than AF and premature ventricular and
atrial contractions in the subset of high-quality ECG intervals were also
labeled by the reviewers as other rhythms (OR). Eventually, from these
labeled ECG segments, 10,000 noisy and 10,000 high-quality excerpts
of 5 s in length were randomly selected to build the final database.
Note that the group of high-quality ECG intervals was composed of
7650, 1750, and 600 ECG excerpts from normal sinus rhythm (NSR)
segments, AF episodes, and OR intervals, respectively, such as Table 1
summarizes.

On the other hand, the publicly available training set of the Phy-
sioNet/CinC Challenge 2017 Database (PC2017DB) [27,28] was also
analyzed. This dataset contains 8528 ECG recordings with a duration
ranging from 9 to 60 s. They were acquired by a portable AliveCor™ de-
vice, which operates linked to a smartphone with a sampling fre-
quency of 300 Hz and 16 bits of resolution over a dynamic range
of +5 mV. Several experts annotated the ECG recordings, discerning
among four different classes, i.e., NSR, AF, OR, and noisy signals.
Once the recordings were segmented into 5 second-length excerpts,
the resulting 47,439 high-quality and 1168 low-quality ECG intervals
formed the second dataset included in the study. As can be seen in
Table 1, a total of more than 68,600 ECG excerpts of 5 s in length were
finally analyzed.
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Table 1
Total number of ECG segments included in the two databases enrolled in the study.
Class Database Total
PDB PC2017DB
NSR 7650 28,413
High-quality AF 1750 4329 57,439
OR 600 14,697
Low-quality 10,000 1168 11,168
Total 20,000 48,607 68,607

3. Methods
3.1. Data preprocessing

An acquisition rate of 250 Hz is commonly considered sufficient to
detect R-peaks, and accurately analyze and interpret ECG signals [29].
Bearing in mind that it was the lowest sampling rate between the
two databases, all ECG excerpts from the PC2017DB were resampled
to this frequency. A forward/backward, 8th-order Chebyshev low-pass
filtering was used to avoid aliasing. Additional filtering stages were
also considered to reduce typical artifacts and noises acquired along
with the ECG signal. Hence, the baseline wandering was removed using
a moving median filtering of order equal to half of the sampling fre-
quency [30]. An algorithm based on the stationary Wavelet transform
was also employed to remove the powerline interference and other
high-frequency noises, but mostly preserving the original ECG morphol-
ogy [31]. Lastly, all ECG excerpts were normalized to avoid any bias
related to the amplitude and highlight the different morphology from
high- and low-quality ECG segments. A generalized min—-max scaling
was applied to restrict the range of values in the ECG between —1 and
1. Precisely, denoting the preprocessed N sample-length ECG interval

as x(n) = {x(1),x(2), ..., x(N)}, its normalized version was obtained as
2- (x(n) - min{x(n)})
e = =1+ ] = minx(n)] M

3.2. Phase space reconstruction of the ECG signal

Phase space representations obtain a geometric view of the under-
lying dynamics of a system to facilitate the study of its behavior. A
valid PS is any vector space where the dynamical system’s behavior
can be unequivocally defined at every point [32]. The most used way
to reconstruct full dynamics of a system from the generated time series
is the well-known Takens’ delay embedding theorem, which is based
on plotting the original time series versus its time-delayed copies [32].
Accordingly, for a normalized ECG segment e(n), the time-lagged PS
vectors are given by

E@) = {e(i),e(i +7),...,e(i + (m=1)- 1)}, (2)

i ranging from 1 to N — (m — 1) - 7, m being the embedding dimension
of the PS, and r the time delay between points in the series. The
optimal selection of both parameters m and z is a key step to obtain
fully representative PS portraits of the system’s behavior [32]. Although
several approaches have been proposed to automatically optimize their
values [32], the special case of m = 2 and r = 1 has been widely
considered to feature the ECG morphology [19] and heart rate vari-
ability [33] in a broad variety of contexts. This simplified 2-D PS is
commonly referred to as the PP [33]. As an example, Fig. 1 displays
the PP for typical 5 second-length ECG excerpts presenting NSR, AF,
OR, and noise. Note that, whereas the first three cases, all belonging
to the high-quality group, do not show large differences in the PP, the
distribution of points in the last case (low-quality ECG excerpt) was
markedly different.

To avoid the use of a specific value of r and make the resulting
distribution of points (or attractor) independent on the parameters
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associated with PS reconstruction, a modified version of the PP has
also been recently proposed [34]. This plot is obtained by displaying
the first order difference (i.e., e(n + 1) — e(n)) regarding the original
time series (i.e., e(n)). In this case, the resulting geometrical figure
is different from the PP, such as Fig. 2 presents for the same ECG
excerpts displayed in Fig. 1. The largest semi-circle in this FODG is
usually corresponding to the QRS complex [34], thus exhibiting a
clearly defined pattern in high-quality ECG segments (i.e., panels (a),
(b) and (c)), regardless of whether they come from NSR, AF, and OR
episodes. Hence, the usefulness of both kinds of graphs, PP and FODG,
to discern between high- and low-quality ECG intervals using machine
learning and deep learning approaches was analyzed.

3.3. Classification algorithms based on machine learning concepts

To classify high- and low-quality ECG excerpts through machine
learning models, different descriptive features and statistics from the PP
and FODG were manually derived. Thus, elliptical geometry exhibited
by the distribution of points in the PP was firstly quantified through
two well-known standard deviations. In short, these measures, referred
to as S, and S,, were computed by fitting an ellipse on the identity
line [35]. The index S, is the standard deviation of the dispersion of
points perpendicular to the identity line and is linked to the short-term
variability in the time series. Similarly, S, is the standard deviation of
the dispersion of points along the identity line and is related to the
long-term variability in the time series. To define computation of S,
and S, in mathematical terms, two new time series have to be defined
from the normalized ECG, e(n), such that

ej(n) =-e(n) —e(n+1), 3
and
e,(n)=e(n)+e(n+1), 4)
for n=1,2,..., N — 1. Then, both standard deviations can be computed
as
N-1
S, = e, (i) — G)
\ 2(N 0 ;
and
N-1
52 = 92(1) - Mz s (6)
\2v=1 2(N ) z:l
being y, and p, the mean of e,(n) and e,(n), respectively, i.e.,
L N
M= —— ey (i) )]
and
LN
=57 2 el ®)

i=1
In addition to these two variables, the well-established ratio of them,
ie. S;, = S,/S,, was also obtained to reflect the relationship between
the short- and long-term variabilities in the time series [33].

As an alternative to this elliptical fitting, a novel approach to
characterize the distribution of points in the PP has been recently
proposed by dividing the graph into a grid of C x C cells with a
fixed size [36]. Because the ECG signal was normalized between —1
and 1 and both axes in the PP ranging between these extremes, the
variable C serves as a coarse-graining parameter of the plot. Several
measures were then derived from the gridded plot with the idea of
quantifying the differences between well-defined, regular distributions
of points associated with the high-quality ECG excerpts and irregular,
chaotic attractors presented by the low-quality and noise-corrupted
ECG intervals. Precisely, the number of void grids (V), i.e., the number
of cells containing no points, the interquartile range (Z) of non-void
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Fig. 1. Poincaré plots (bottom panel) obtained for typical 5 second-length ECG segments (top panel) from (a) NSR, (b) AF, (c) OR, and (d) noisy episodes.
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Fig. 2. First order difference graphs obtained for the same 5 second-length ECG segments presented in Fig. 1 from (a) NSR, (b) AF, (c) OR, and (d) noisy episodes.

grids, i.e., of those containing one or more points, the median absolute
deviation (M) of non-void grids, the number of points accumulated by
the grid cells located on the main diagonal (D) and at a normalized
distance less than +0.2, the largest number of points accumulated by a
grid cell (£) and the relative position (P) of this cell within the C x C
matrix, and finally the gridded distribution entropy (£). To compute
this last parameter, the percentage of points in each cell regarding the
total one (i.e., p; for i = 1,2, ..., CxC) was firstly computed. Then, after
discarding those void grids, & was estimated by computing common
Shannon Entropy, such that

CxC-y

E=- Y p-In@p). )
i=1

In general terms, irregular, chaotic attractors are expected to result in
less void grids (i.e., lower values of V), greater dispersion in distribu-
tion of points (i.e., larger values of T and M), less points accumulated
around the main diagonal (i.e., lower values of D), more variable
content and position of the cell including the largest number of points
(i.e., larger differences in values of £ and P), and more irregularity
in the displayed information (i.e., larger values of &) than regular,
repetitive ones.

The same grid mapping approach was also used to qualitatively
characterize the distribution of points in the FODG. However, in this
case the parameters S, S,, and S|, were not computed, and addi-
tionally the index D was modified for a better quantification of the
resulting attractors. Thus, the number of points accumulated by the

cells placed on the abscissa axis and at a normalized distance of + 0.2
was computed. As a summary, the indices V, I, M, D, £, P, and &
were obtained with the same idea of discerning between regular and
chaotic attractors on the FODG.

The variables derived from each one of the two PS representa-
tions were then used to generate two different classification models
between high- and low-quality ECG excerpts. Those finally included in
each model were automatically chosen by making use of a common
wrapper-type feature selection algorithm, such as a forward sequential
selection technique [37]. Thus, according to their statistical relevance,
the features were sequentially added to an empty candidate set until
the addition of further ones did not decrease the classification error,
assessed inside repeated cross-validation loops to reduce overfitting.
The optimal subset of indices obtained for each PS portrait was then
combined through a GentleBoost algorithm, which creates a strong
ensemble classifier by weighted voting from a set of weak learners.
In the present work a decision tree model was used as weak learner,
and the Gini’s index was employed to split data. It was also established
a maximum number of decision splits of 8, a maximum number of
learning cycles of 20, and a learning rate of 0.015.

3.4. Classification algorithms based on deep learning concepts
In contrast to the machine learning classifiers, the deep learning

models do not combine hand-crafted, knowledge-based discrete vari-
ables. Indeed, they use neural networks to holistically assess global
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Sequence of layers and their characteristics included in the proposed CNN.

Layer Type of layer # parameters # Filters or neurons Kernel size/Stride Output size
0 Input layer - - CxCx3

1 2-D Convolution layer 448 16 3/1 CxCx16
2 Bath normalization 32 - CxCx16
3 Average pooling layer - k/k 22x22%x16
4 Fully connected layer 154,900 20 - I1x1x20

5 Dropout function (0.25) - - 1x1x20

6 Fully connected layer 42 - Ix1x2

7 Softmax function - - I1x1x2

8 Classification layer - - Ix1x2

information in inputted images and then extract more abstract, low-
level features [38]. The architecture of a common 2-D CNN consists
of a set of different layers operating in a sequential and/or parallel
way [38]. Thus, the network initially presents, at least, a convolu-
tional layer that extracts local features from the input image by its
convolution with different filters. This layer is generally followed by
a pooling one, which combines similar features to make the model
simpler and more robust to noise and input deformations. The features
resulting from this layer represent the original image from different
angles, achieving more abstract representations when the number of
convolutional and pooling layers interconnected in series or parallel
increases. The network ends with, at least, a fully-connected layer,
which converts the 2-D feature map obtained by a pooling layer into a
1-D vector to estimate the probability distribution of belonging to each
output class. Apart from the layers, other mathematical functions, such
as rectified linear units (ReLU), data normalizations, and dropout reg-
ularizations, are often included in intermediate points of the network
to enhance its generalization capability and reduce overfitting [38].

To discern between low- and high-quality ECG segments using this
kind of network, the gridded versions of the PP and FODG were firstly
transformed into 2-D images. For that purpose, a Jet colormap with 128
colors was applied to the range of values obtained by computing the
logarithm of the number of points in each grid cell. As an example, the
images resulting from the ECG segments displayed in Figs. 1 and 2 for C
= 25 are respectively presented in the top and bottom panels of Fig. 3.
Next, with the idea of developing a lightweight network able to operate
even in resource-constrained environments (i.e., with computational
power, memory capacity, and battery limitations) [39], a minimal
structure of layers was designed, such as Table 2 displays. Precisely,
after the input image passing through a convolutional layer, a batch
normalization, and an average pooling layer, the obtained 2-D feature
map was converted to a 1-D vector through a first fully-connected layer.
To minimize overfitting, a dropout function with a rate of 25% was
introduced before the final fully-connected layer, which was connected
to a softmax classifier. The obtained softmax mapping score was lastly
compared with the corresponding input label to calculate cross-entropy
loss and then classify the input image. Note that ReLU activation
functions were inserted after the batch normalization and the first fully-
connected layer. Moreover, the main goal of the pooling layer was to
keep the number of network parameters constant as the C x C matrix of
cells increased. Thus, the pooling region size and stride took different
values (k) to maintain a feature map of size 22 x 22 x 16 regardless of
the value of C.

3.5. Previous classification algorithms

To serve as a reference, two well-known methods based on com-
bining hand-crafted, ECG-based features through conventional machine
learning classifiers were implemented. The first algorithm was pro-
posed by Behar et al. [21] and blended seven ECG-based parameters
through an SVM classifier. The variables were the fraction of beats
simultaneously detected by two previously published R-peak detectors,
the ratio of the number of beats detected by these two detectors, the
relative power in the QRS complex, the third moment (i.e., skewness)

of the signal, the fourth moment (i.e., kurtosis) of the signal, the
relative power in the baseline, and finally the ratio of the sum of the
eigenvalues associated with the five principal components over the sum
of all eigenvalues obtained by a principal component analysis applied
to the time-aligned ECG beats detected by one of the previous R-peak
detectors. More recently, Albaba et al. [29] have analyzed a generic
machine learning pipeline and a broad variety of ECG-based features
to discern between high- and low-quality ECG excerpts. The algorithm
reporting the best performance was based on an SVM classifier and
seven variables, i.e., mean, maximum, kurtosis and skewness of the
spectral distribution of the ECG signal, median absolute deviation of
the wavelet scales 3 and 5 of the ECG signal, and finally the location
of the first zero-crossing in the autocorrelation function of the ECG
signal. Note that, an SVM classifier with a Gaussian kernel (scale of
1 and maximum penalty on margin-violating observations of 25) was
employed in both cases.

Moreover, other two previous ECG quality indices based on more
advanced deep learning concepts were also implemented for compar-
ison purposes. On the one hand, Liu et al. [11] introduced a method
composed of a three-layer wavelet scattering network and a bidi-
rectional long short-term memory (Bi-LSTM) architecture. In brief,
scattering coefficients of order 0, 1, and 2 were generated from the
normalized ECG segment, e(n), using a wavelet scattering network,
constructed with a Morlet wavelet function. The resulting scattering
feature matrix was then inputted into a Bi-LSTM network to discern
between high- and low-quality ECG excerpts. On the other hand, be-
cause 2-D CNN schemes fed with ECG-based images have provided
promising classification results in a variety of scenarios [40], the al-
gorithm proposed by Zhao et al. [16] was also considered. In this
case, the raw ECG signal was transformed into a 2-D image using a
modified frequency slice Wavelet transform and then inputted to a CNN
architecture, consisting of 9 learnable layers. Thus, it included an input
layer designed to receive a grayscale image of 200 x 50 pixels, three
convolution layers, three maximum pooling layers, one flatten layer,
and one fully-connected layer.

3.6. Training, validation, and testing of the classification algorithms

The most accurate and unbiased overview of the performance of
a classification model can only be obtained by conducting its training
and testing on separate databases, because other validation approaches
where data from the same patients are shared in both stages often
provide inflated results [41,42]. Such an external validation with in-
dependent datasets has been vigorously advocated for every clinical
application by the Transparent Reporting of a multivariate prediction
model for Individual Prognosis Or Diagnosis (TRIPOD) initiative [43].
Hence, in the present work the PDB and PC2017DB were detachedly
used for training and testing of all generated classification algorithms.

The PDB was specifically collected to be balanced and then mini-
mize misclassification of the samples belonging to the minority class
in a prospective performance. In this respect, models trained with
unbalanced datasets often exhibit a classification bias towards the
majority class, due to its increased prior probability [44]. Moreover, to
assess learning of the models during training, this dataset was divided
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(a) Poincaré plots
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(b) First order difference graphs
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Fig. 3. Color images resulting for the parameter C =25 from the PS representations displayed in (a) Fig. 1 and (b) Fig. 2, respectively.

into two stratified groups, so that 80% of samples were used for
training and the remaining 20% for validation. Only in the case of
deep learning models and with the idea of improving their learning
and generalization ability, diversity of information in the training
subset was increased using a well-established data augmentation ap-
proach. Precisely, the dataset was duplicated by randomly applying to
every ECG-based image a rotation between —15° and 15° or a transla-
tion in x-direction or y-direction between —3 and 3 pixels. Moreover,
an early stopping approach was used to avoid overtraining of these
models [45]. Thus, the training process was stopped when validation
accuracy (i.e., the percentage of correctly classified ECG excerpts on
the validation subset) was not increased for 10 consecutive epochs.
It should also be noted that a stochastic gradient descent algorithm
and a constant learning rate of 0.01 on a batch size of 512 samples
were used to train the proposed deep learning models based on PP and
FODG images, whereas the parameters recommended by the authors
in [11,16] were used for the Liu et al.’s and Zhao et al.’s methods,
respectively.

Despite being highly unbalanced, the PC2017DB was used for ex-
ternal testing. The fact that this database was freely available makes
comparison of the obtained results with others previously published
easier and fairer. Furthermore, severe unbalance is not a major problem
in the testing phase. Although the most common performance metric,
i.e., Accuracy, usually shows overoptimistic inflated results on unbal-
anced datasets, alternative indices have been proposed to provide more
truthful scores, including Balanced Accuracy (BAcc), F;, and Matthews
correlation coefficient (MCC) [46]. Assuming the positive class as the
group of high-quality ECG excerpts and the negative class as the group
of low-quality ECG intervals, and TP, TN, FN, and FP being the
abbreviations of true positive, true negative, false negative, and false
positive, respectively, these performance metrics, along with sensitivity
(Se) and specificity (Sp), were computed as

Se = L, 10)
TP+ FN
Sp= —1N an

“TN+FP

_ Se+Sp

BA 2227 12
ce R 12)
Fl=—2TP __ and 13)
2.TP+FP+FN
mec=(1+ TP-TN-FP-FN )
\TP+FP)-(TP+FN)- (TN + FP)-(TN + FN)
a4

Moreover, to analyze how AF excerpts were discerned from noisy
ECG segments, the rates of correctly classified NSR (R ygg); AF (R 45),
and OR (Ry) intervals were also estimated within the high-quality
group.

Finally, average time required by all the analyzed machine and deep
learning models to classify a 5 second-length ECG sample in training,
validation, and testing stages was also measured as an estimation of
computational cost. Note that all the experiments were conducted with
MATLAB 2023a, running on an HP workstation with 32 GB RAM
memory, an Intel Xeon @ 3.60 GHz processor, and a graphic processing
unit (GPU) GeForce GTX 1060 with 6 GB dedicated VRAM memory.

4. Results

To build the machine learning models, automated feature selection
was conducted on the training dataset (i.e., 80% of the samples in the
PDB) using a 10-fold cross-validation approach. This procedure was
repeated 5 times with random splits to reduce the bias resulting from
a single split of the PDB into training and validation subsets. In most
iterations three features were selected for the two PS representations.
The variables D and & were firstly chosen in both cases, whereas the
third index was S), for the PP and P for the FODG. The classification
outcomes yielded by the resulting models of merging these variables on
the validation (20% of the samples in the PDB) and testing (PC2017DB)
datasets are presented in Table 3. As can be seen, for both datasets
highly balanced values of Se and Sp were noticed in the case of using
PP-based features. Moreover, all the performance metrics computed for
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Table 3
Classification results obtained by the machine learning models on the validation and testing datasets.
PS portrait Database Cc # Parameters Se Sp BAcc F, MCC Rysr Rar Ror
25 3 (D, & Sp) 0.951 0.936 0.943 0.944 0.944 0.951 0.997 0.805
Validation 45 3(D, &, S,) 0.949 0.936 0.942 0.943 0.943 0.950 0.994 0.808
65 3(D, &, S 0.954 0.933 0.943 0.945 0.944 0.955 0.994 0.803
PP 85 3 (D, & S)y) 0.949 0.934 0.941 0.942 0.942 0.950 0.994 0.808
25 3(D, &, S),) 0.847 0.834 0.841 0.915 0.639 0.873 0.843 0.800
Testin 45 3(D, &, S)) 0.843 0.826 0.835 0.913 0.636 0.871 0.843 0.791
& 65 3 (D, & Sp) 0.851 0.825 0.838 0.917 0.639 0.879 0.842 0.798
85 3(D, &, S),) 0.855 0.813 0.834 0.920 0.639 0.882 0.851 0.805
25 3(D, & P) 0.933 0.883 0.908 0.911 0.909 0.933 0.979 0.800
Validation 45 3(D, &, P) 0.929 0.880 0.904 0.907 0.905 0.928 0.982 0.783
65 3@, & P) 0.926 0.877 0.902 0.905 0.902 0.922 0.991 0.800
FODG 85 3(D, & P) 0.925 0.868 0.897 0.900 0.897 0.922 0.994 0.775
25 3D, &, P) 0.802 0.872 0.837 0.889 0.626 0.829 0.793 0.753
Testin 45 3@, & P) 0.800 0.865 0.833 0.888 0.624 0.828 0.786 0.752
8 65 3(D, & P) 0.777 0.862 0.820 0.873 0.615 0.802 0.787 0.725
85 3D, & P) 0.762 0.849 0.805 0.863 0.608 0.787 0.756 0.715

these PP-based models obtained quite stable values regardless of the
grid size C. Thus, for the analyzed values of C = 25, 45, 65, and 85, the
metrics Se, Sp, BAcc, F|, and MCC always remained about 0.950, 0.935,
0.940, 0.945, and 0.945 on the validation dataset and about 0.850,
0.830, 0.840, 0.920, and 0.640 on the testing database, respectively.
Within the group of high-quality ECG excerpts, the rates of properly
identified NSR, AF, and OR intervals were also steady around 0.950,
0.995, and 0.805 on the validation dataset and around 0.880, 0.840,
and 0.800 on the testing database, respectively. A similar behavior was
also noticed for the models combining FODG-based features. However,
a slightly lower global performance was outlined by the metrics BAcc,
F,, and MCC both in validation and testing phases. Moreover, in this
case a difference between the values of Se and Sp of about 5%-10%
was also noticed, as well as a mild trend towards poorer classification
outcomes when the grid size decreased (i.e., C increased). Additionally,
the rates R gz and R 4 were about 10% lower than for the models
based on PP features in both validation and testing stages, but the index
Ror was only about 5%-7% lower in the case of testing.

Regarding the classification results obtained by the deep learning
models, the averaged performance metrics for the 5 iterations con-
ducted on the validation and testing databases are displayed in Table 4.
As for the machine learning algorithms, in this case the models inputted
with the PP-based images exhibited a classification performance stable
for every value of C, as well as well-balanced in terms of Se and Sp. A
similar behavior was also noticed for the deep learning models fed with
FODG-based images, additionally reporting comparable values in most
performance metrics. Indeed, for both cases, values of BAcc, F; and
MCC about 0.970 were noticed on the validation database and about
0.830, 0.910, and 0.630 on the testing dataset, respectively. Within
the group of high-quality ECG excerpts, comparable results were also
observed for all the models based on both kinds of PS images, but a
trend towards a better classification of OR episodes was seen for those
fed with FODG-based images. To this respect, the rate R,y reported by
the FODG-based models on the validation dataset was about 4%-5%
higher than that obtained by the PP-based algorithms.

The classification outcomes obtained by the four previous ECG
quality assessment algorithms implemented for comparison purposes
are presented in Table 5. On the validation dataset, Behar et al.’s [21],
Liu et al.’s [11], and Zhao et al.’s [16] methods yielded a very high
performance, with values of BAcc, F;, and MCC larger than 0.960,
whereas the Albaba et al.’s method [29] reported more modest values
about 0.900. However, a notable reduction in the discriminant power
on the testing dataset was observed for the four techniques, reporting
values of BAcc, F), and MCC lower than 0.82, 0.888, and 0.62, respec-
tively. Moreover, larger unbalances between values of Se and Sp than
in validation were also noticed, especially in the case of Behar et al.’s
method [21]. As well, it is worth noting that in most cases these out-
comes were between 2% and 10%, between 3% and 9%, and between

2% and 5% poorer in terms of BAcc, F;, and MCC, respectively, than
those obtained by the proposed machine and deep learning algorithms
based on PP and FODG features and images. Similarly, within the group
of high-quality ECG excerpts previous methods also reported lower
rates of R ygr> Rars Ror between 4% and 16%, between 2% and 16%,
and between 1 and 15%, respectively.

Finally, Table 6 presents average time spent by all the analyzed
algorithms on a 5 second-length ECG excerpt in training, validation
and testing. As can be seen, the deep learning models fed with both
PP and FODG images required a similar training time, which increased
as a function of C. This time was much higher (approximately between
2 and 31 times) than that required for training the machine learning
algorithms based on both PP and FODG features. Contrarily, the time
spent in classifying each sample on validation and testing was similar
for most of these machine and deep learning algorithms, because it was
between 1 and 2 ms in all the cases. Moreover, this time was notably
lower (approximately between 3 and 145 times) than that required by
the previous techniques implemented for comparison purposes, both
in validation and testing stages. In the same line, all these previous
methods except the Behar et al.’s one [21] also needed more training
time.

5. Discussion
5.1. Main findings

In the last years, diverse kinds of PS representations have been
widely used to characterize the response of physiological systems [32,
471, as well as to detect events and diseases [48,49] and extract clin-
ically relevant information from biomedical signals [19,20]. However,
to the best of our knowledge, this is one of the earliest works proving
the usefulness of two common PS portraits, such as the PP and FODG,
for quality assessment of single-lead ECG recordings. Only one study
combining a few hand-crafted, FODG-based features with an SVM has
been previously proposed to discern among ECG excerpts artificially
disturbed with different levels of noise [50]. Besides not considering
real-world noisy ECG signals contaminated during their acquisition, a
limited database without patients suffering from AF and other supra-
ventricular arrhythmias was only analyzed in that pilot study. Hence,
the present work has conducted a broader, more systematic and robust
experimentation about PS reconstruction of the ECG for its quality
evaluation, introducing novel PS-based features and images for feeding
conventional machine learning and advanced deep learning classifiers.

In a straightforward comparison of the same experimental protocol
and datasets, the combination of manually and automatically derived
features from the proposed gridded versions of the PP and FODG
reported notably better binary classification outcomes between high-
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Table 4
Classification results obtained by the deep learning models on the validation and testing datasets.
PS portrait Database Cc # Parameters Se Sp BAcc F, MCC Rysr Rar Ror
25 155,422 0.976 0.975 0.976 0.976 0.976 0.988 0.994 0.775
Validation 45 155,422 0.979 0.972 0.976 0.976 0.976 0.991 0.994 0.788
65 155,422 0.981 0.954 0.967 0.969 0.968 0.991 0.994 0.817
PP 85 155,422 0.982 0.948 0.965 0.966 0.965 0.993 0.994 0.804
25 155,422 0.813 0.854 0.833 0.895 0.627 0.793 0.792 0.803
Testin 45 155,422 0.851 0.826 0.838 0.917 0.640 0.832 0.827 0.841
& 65 155,422 0.853 0.835 0.844 0.919 0.643 0.834 0.832 0.842
85 155,422 0.817 0.838 0.827 0.897 0.626 0.800 0.788 0.806
25 155,422 0.982 0.966 0.974 0.974 0.974 0.990 0.994 0.833
Validation 45 155,422 0.985 0.973 0.979 0.979 0.979 0.994 0.994 0.838
65 155,422 0.978 0.975 0.977 0.977 0.977 0.989 0.994 0.788
FODG 85 155,422 0.987 0.941 0.964 0.965 0.965 0.995 0.994 0.867
25 155,422 0.850 0.819 0.834 0.917 0.638 0.831 0.835 0.839
Testin 45 155,422 0.837 0.840 0.838 0.909 0.636 0.818 0.817 0.826
8 65 155,422 0.816 0.854 0.835 0.896 0.630 0.798 0.790 0.805
85 155,422 0.828 0.843 0.835 0.904 0.632 0.810 0.801 0.817

Table 5

Classification results obtained by the previous ECG quality assessment algorithms implemented for comparison purposes on the validation and testing datasets.

Database Algorithm # Parameters Se Sp BAcc F, MCC Rysr Rar Ror
Behar et. al. [21] 7 0.971 0.959 0.965 0.965 0.965 0.978 0.988 0.825
Validation Albaba et. al. [29] 7 0.878 0.925 0.901 0.900 0.902 0.887 0.882 0.758
Liu et. al. [11] 27,532 0.971 0.960 0.966 0.966 0.966 0.978 0.999 0.800
Zhao et. al. [16] 35,394 0.984 0.998 0.991 0.991 0.991 0.990 0.984 0.900
Behar et. al. [21] 7 0.712 0.890 0.801 0.830 0.600 0.723 0.710 0.690
Testin Albaba et. al. [29] 7 0.739 0.804 0.771 0.847 0.593 0.752 0.685 0.729
J Liu et. al. [11] 27,532 0.791 0.719 0.755 0.880 0.594 0.806 0.830 0.750
Zhao et. al. [16] 35,394 0.772 0.860 0.816 0.868 0.617 0.774 0.759 0.762

Table 6

Average time required by all the analyzed algorithms on a 5 second-length ECG excerpt
in training, validation, and testing. The values are expressed in seconds.

Algorithm PS portrait C Computational time
Training Validation Testing
25 0.002 0.001 0.001
PP 45 0.002 0.001 0.001
65 0.002 0.001 0.001
Machine learning 85 0.002 0.001 0.001
25 0.002 0.001 0.001
45 0.002 0.001 0.001
FODG 65 0.002 0.001 0.001
85 0.002 0.001 0.001
25 0.007 0.001 0.001
PP 45 0.030 0.001 0.001
65 0.050 0.002 0.002
X 85 0.053 0.002 0.002
Deep learning

25 0.006 0.001 0.001
45 0.023 0.001 0.001
FODG 65 0.065 0.002 0.002
85 0.073 0.002 0.002
Behar et. al. [21] - - 0.008 0.007 0.007
Albaba et. al. [29] - - 0.086 0.084 0.085
Liu et. al. [11] - - 0.084 0.028 0.028
Zhao et. al. [16] - - 0.167 0.145 0.145

and low-quality ECG excerpts than four well-known previous algo-
rithms, i.e., those proposed by Behar et al. [21], Albaba et al. [29],
Liu et al. [11], and Zhao et al. [16]. Precisely, the machine and deep
learning models built from PP- and FODG-based features and images
provided values for the global performance metrics BAcc, F,, and MCC
about 2%-10% greater than those previous methods (see Tables 3—
5), then reaching the best results on the external testing dataset of
about 84%, 90%, and 64%, respectively. Likewise, they also reported
about 2%-16% greater rates in well classification of NSR, AF, and OR
episodes within the group of high-quality ECG segments. These findings

suggest that the proposed PS-based techniques achieved the best trade-
off between sufficient generalization to disregard intrinsic inter-patient
variability in morphology and amplitude presented by high-quality ECG
excerpts and high sensitivity to discern most of the transient dynamics
associated with noises and artifacts from those linked to high-quality
NSR, AF, and OR segments. To this respect, Figs. 1 and 2 show how
these three rhythms resulted in similar attractors both in the PP and
FODG, whereas a completely different distribution of points was seen
for the low-quality excerpt.

It should also be noted that the proposed PS-based methods re-
quired less or comparable time for training than three out of the
four previous algorithms implemented for comparison purposes (see
Table 6). Moreover, once trained, they provided a classification of ECG
excerpts in validation and testing stages notably quicker than all the
previous techniques. Both outcomes could be explained by the fact
that reconstruction of the PP and FODG do not require mathematical
computation, whereas some hand-crafted features employed by previ-
ous algorithms, such as approximate entropy, as well as most time—
frequency transformations are computationally cost [51,52]. Overall,
ECG transformation to PP- and FODG-based portraits appears to reveal
novel information of great utility for ECG quality assessment, enabling
the development of both machine and deep learning models able to
classify high- and low-quality ECG excerpts in a simple, efficient, and
computational low-cost way.

5.2. Indirect comparison with other previous works

Beyond these last findings derived by direct comparison with the
four previous ECG quality assessment indices implemented to serve as
a reference, it is worth noting that the classification outcomes yielded
by the proposed machine and deep learning models based on PP and
FODG features and images were also comparable or slightly lower
than those presented by the majority of previous works, which have
reported accuracy values of 90% or above [9,10]. However, every
indirect comparison of results obtained on different datasets should
be considered with caution. Thus, many previous works only dealt
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with a small amount of ECG signals, acquired from a homogeneous
group of healthy subjects with a single recording system [9,10]. In-
deed, most analyzed a freely available database that was specifically
designed for quality assessment of 12-lead ECG signals and contains
about 1500 excerpts of 10 s in length [28]. In contrast, more than
68,000 single-lead, 5-second length ECG excerpts with a wide variety
of morphologies, noises, and artifacts were examined in the present
work. They were acquired with two different wearable devices from
diverse body positions. While the PDB was formed by ECG recordings
obtained from a non-standard lead with a textile Holter placed on
the patient’s thorax, the PC2017DB collected signals captured from
an equivalent lead I between the two patient’s hands with a portable
ECG monitor [27]. Moreover, both datasets included ECG recordings
from healthy subjects, but also from patients with AF and other supra-
ventricular arrhythmias. It is well-known that these cardiac disorders
often provoke abnormal atrial waves that can be easily confounded
with high frequency noise [21,22], thus involving a harder challenge
than quality evaluation of ECG recordings exclusively obtained from
healthy subjects. Actually, many previous algorithms presented an
excellent accuracy in assessing quality of ECG signals from healthy
subjects, but their performance was drastically reduced by 10%-40% in
patients with AF and OR. This behavior was observed both for machine
learning algorithms based on combining diverse kinds of hand-crafted
features [53], including the Behar et al.’s method [21], as well as
for deep learning methods based on 1-D and 2-D CNN schemes with
sequential and parallel architectures [15,54].

Of note is also that resubstitution validation and ECG segment-wise
cross-validation approaches were mainly used to estimate the proposed
algorithm’s performance in most previous works [9,10]. Although a
more unbiased and general overview of the performance of a model
is obtained with cross-validation than with resubstitution validation
(i.e., when the method is trained and tested on the same dataset),
the inclusion of ECG excerpts from the same patients in training and
testing subsets during cross-validation loops often inflates classification
results because the models are able to memorize subject-specific fea-
tures [41,42]. For instance, whereas Albaba et al.’s method achieved
values of BAcc about 90% on three separate databases using ECG
segment-wise cross-validation, the same performance metric fell to 50%
when a database was used for training and the remaining two for
testing [29]. Similarly, the Liu et al.’s technique also reported values
of accuracy near 99% and less than 80% when ECG segment-wise
cross-validation and external validation were respectively used [11]. In
contrast, as recommended by TRIPOD guidelines [43], all the results
obtained in the present work were obtained by external validation
using two separate databases for training and testing, and they could
therefore be considered more robust than those presented by most
previous works. This finding together with the high values of BAcc,
F,, and MCC obtained on the testing subset suggest that the proposed
machine and deep learning models based on PP and FODG features
and images achieved heavy levels of generalization when discerning
between high- and low-quality ECG excerpts.

Another interesting advantage of these proposed PS-based methods
regarding many previous approaches, both based on machine learning
classifiers [9,10] and CNN-based schemes [55], is their ability to deal
directly with the preprocessed ECG recording. Indeed, no delineation
of fiducial points and detection of R peaks were required, reducing
the impact of the frequent errors associated with these procedures,
especially in presence of artifacts and QRS complexes with abnormal
morphologies [56]. Moreover, as previously mentioned, PP and FODG
reconstructions do not require any kind of mathematical transforma-
tion, thus making the proposed algorithms more easily interpretable
and computationally efficient than most of the previous ECG quality
indices found in the literature.
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5.3. Comparison between PS representations

Comparing the obtained results by the two analyzed PS represen-
tations, the machine learning models based on PP features reported a
more stable performance, as a function of the grid cell’s size C, than
those based on FODG variables both for the validation and testing
datasets (see Table 3). This finding might be motived by the fact that
the features S; and D are by definition independent and the index &
slightly dependent on the used grid mapping approach [50]. Contrarily,
the very definition of the variable P involves an intrinsic variability
as a function of C, which could explain the gently greater differences
noticed in the results obtained by the machine learning models based
on the FODG features. Thus, although the relative position of the largest
accumulation of points within the C x C matrix should always remain
in the same region, the specific location of the cell containing the
greatest number of points will be strongly dependent on its size (i.e., on
the value of C).

Contrarily, all the deep learning models based on both PP and FODG
images yielded a very similar performance on the validation and testing
datasets for every value of C (see Table 4). Moreover, they presented
classification metrics on the testing dataset totally comparable to those
reported by the machine learning algorithms. To this respect, differ-
ences in the metrics BAcc, F,, and MCC provided by all the machine
and deep learning algorithms were lower than 2%. In the case of
classification of the different rhythms within the high-quality group,
a slightly different trend was observed for both kinds of models on the
testing database. Whereas the deep learning algorithms presented well-
balanced classification rates of about 80%-83% for NSR, AF, and OR
episodes, the machine learning methods tended to classify NSR and AF
intervals mildly better than OR excerpts. Anyway, it should be noted
that the main goal of the present work was to explore the usefulness
of two common PS representations for ECG quality assessment and
not to compare the performance of diverse machine and deep learning
techniques. In fact, to work even in scenarios with limited resources of
memory, battery, and processing, a lightweight CNN architecture was
only considered. The use of deeper CNN schemes and transfer learning
from diverse pre-training stages could improve classification between
high- and low-quality ECG intervals [12,57]. However, these aspects
will be tackled in the future.

Another interesting point to highlight is that the deep learning
models initially trained on the PDB were only able to provide val-
ues of Sp about 15%-20% larger than Se, when externally tested
on the PC2017DB. As in many clinical scenarios [58], this situation
was undesirable because it increased the probability of misinterpreting
brief AF episodes as noisy excerpts. Hence, to compensate the rates
of false positives and false negatives and achieve the well-balanced
results displayed in Table 4, training of all the deep learning models
was improved by duplicating the PDB via data augmentation. In this
way, the training dataset remained balanced for both groups of high-
and low-quality ECG excerpts, but more diverse PP- and FODG-based
attractors were offered for the models’ learning. In fact, it is reasonable
to think that the improvement in detection of high-quality ECG excerpts
(i.e., Se) noticed for all the models was due to the increase of such di-
versity of attractors rather than to the increase in the number of images
themselves. In general terms, clean ECG excerpts show great similarity
and scarce morphological variability, thus leading to highly similar
distributions of points both in the PP and FODG. On the contrary, noisy
ECG segments inherently involve a significantly larger pool of different
and chaotic morphologies, which might explain why high values of Sp
were even achieved without the need for data augmentation.

Beyond the PP and FODG, other PS representations based on the
Takens’ delay embedding theorem can also be found in the literature.
However, the former alternatives were considered as a first approxima-
tion to study the usefulness of transforming ECG into simple and free
of tunable parameters PS representations for its quality evaluation. To
this respect, values of m =2 and r = 1 are well-established for the PP
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reconstruction [35], while the FODG presents the additional advantage
of removing every dependency with the parameter z [34]. On the
contrary, another well-known PS reconstruction, such as the recurrence
plot, involves the need to define more parameters in addition to m
and 7. Indeed, this graph represents the times when a time series
roughly recurs the same area in the PS, and therefore it is mandatory
to define the concept of recurrence (i.e., when two points in the PS
are sufficiently close to be considered as visiting the same area) [59].
Although a variety of methods have been proposed to optimize the pa-
rameters required by this PS representation, they have provided highly
variable values as a function of the ECG-based application [60,61].
Nonetheless, recent classification of recurrent plots with a 2-D CNN
scheme has provided promising results in ECG-based detection of AF
and other cardiac arrhythmias [62,63], and that approach could also be
expected to successfully work in ECG quality assessment. Thus, further
experiments to this respect will be conducted in the future.

5.4. Limitations

A binary classification between high- and low-quality ECG excerpts
was only considered in the present study to minimize the impact of the
implicit subjectivity in grading ECG quality [21] on the performance
of the analyzed models. Given that there are no standard and strict
limits to discern among several levels of ECG quality and previous
works have used diverse criteria to establish three or more levels [64],
the most objective criterion possible for a binary categorization of
the ECG excerpts from the PDB was chosen on the basis of whether
R peaks could be clearly detected. In this way, accurate subsequent
analysis of the heart ventricular response and its variability may only
be ensured, since other ECG waveforms and intervals (e.g., P-wave, T-
wave, TQ-interval, etc.) might still be corrupted by noise. Nonetheless,
heart rate variability analysis is often sufficient to detect most cardiac
arrhythmias, including AF, on continuous ECG monitoring [65,66].
Moreover, this analysis of R peaks is today predominant on long-term
ECG recordings, because P- and T-waves are often drowned out by noise
in a large part of the signal acquired from most wearable devices [67].

Another limitation of the developed experimental setup is that the
segmentation approach of the ECG recordings from the PC2017DB
might have led to mislabel some 5 second-length excerpts. Although the
duration of the ECG signals ranged between 9 and 60 s, a single quality
label was assigned to each one. Thus, in ECG signals labeled as noisy by
the presence of a highly localized artifact in time, it could only affect
a few ECG excerpts into the recording and the remaining ones would
present high-quality but be erroneously classified as low-quality. These
ECG excerpts would have had a negative impact on the performance
of all the tested models, leading to undervalued figures. However, for
the sake of comparison with other works, a relabeling of these ECG
excerpts with the same criteria used in the PDB was not conducted.
Finally, although all the proposed PS-based methods revealed high
generalization ability on an external dataset, they were trained on
ECG excerpts acquired from only a non-standard lead. Thus, to extend
the pool of ECG patterns both in training and testing stages, further
experiments will be conducted on signals obtained from paroxysmal AF
patients with a variety of conventional and wearable ECG acquisition
systems, where standard and non-standard leads will be recorded.

6. Conclusions

The transformation of the single-lead ECG into two common phase
space portraits, such as the Poincaré plot and first order difference
graph, has resulted to be highly useful for quality assessment of the
signal using classification algorithms based both on machine and deep
learning concepts. Novel features and images derived from the grid
mapping of these phase space representations have led to train models
able to notably improve the performance of well-known and widely
used previous algorithms in the challenging context of paroxysmal AF.
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These features and images present the advantage of being obtained
from the preprocessed ECG signal without requiring mathematical
transformations and detection of its fiducial points, thus avoiding the
inherent errors introduced by such approaches, minimizing the cost of
their computation, and facilitating their implementation in wearable
recording systems. Hence, their use, along with machine and deep
learning classifiers, for automated quality assessment of single-lead
ECG signals might provide a definitive boost to the deployment of
wearable devices in continuous cardiac monitoring of patients suffering
from paroxysmal AF and other supra-ventricular arrhythmias.

CRediT authorship contribution statement

Alvaro Huerta: Investigation, Methodology, Software, Writing
— original draft. Arturo Martinez-Rodrigo: Investigation, Method-
ology. Vicente Bertomeu-Gonzilez: Resources, Supervision. Oscar
Ayo-Martin: Resources, Validation. José J. Rieta: Supervision. Ratl
Alcaraz: Project administration, Supervision, Validation, Writing —
review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

This research has received financial support from Daiichi Sankyo
SLU and from public grants PID2021-00X128525-IV0, PID2021-12380
40B-100, and TED2021-130935B-I00 of the Spanish Government
10.13039/501100011033 jointly with the European Regional Devel-
opment Fund (EU), SBPLY/21/ 180501/000186 from Junta de Co-
munidades de Castilla-La Mancha, Spain, and AICO/2021/286 from
Generalitat Valenciana.

References

[1] Cardiovascular diseases, 2023, Available online: https://www.who.int/news-
room/fact-sheets/detail /cardiovascular-diseases-(cvds), accessed on 23rd March
2023.

A. Timmis, N. Townsend, C.P. Gale, A. Torbica, M. Lettino, S.E. Petersen, E.A.
Mossialos, A.P. Maggioni, D. Kazakiewicz, H.T. May, D. De Smedt, M. Flather, L.
Zuhlke, J.F. Beltrame, R. Huculeci, L. Tavazzi, G. Hindricks, J. Bax, B. Casadei,
S. Achenbach, L. Wright, P. Vardas, European Society of Cardiology, European
society of cardiology: Cardiovascular disease statistics 2019, Eur. Heart J. 41 (1)
(2020) 12-85.

A. Odutayo, C.X. Wong, A.J. Hsiao, S. Hopewell, D.G. Altman, C.A. Emdin,
Atrial fibrillation and risks of cardiovascular disease, renal disease, and death:
systematic review and meta-analysis, BMJ 354 (2016) i4482.

G. Lippi, F. Sanchis-Gomar, G. Cervellin, Global epidemiology of atrial fibrilla-
tion: An increasing epidemic and public health challenge, Int. J. Stroke 16 (2)
(2021) 217-221.

B.J.J.M. Brundel, X. Ai, M.T. Hills, M.F. Kuipers, G.Y.H. Lip, N.M.S. de Groot,
Atrial fibrillation, Nat. Rev. Dis. Primers 8 (1) (2022) 21.

S. Blum, S. Aeschbacher, P. Meyre, L. Zwimpfer, T. Reichlin, J.H. Beer, et al.,
Incidence and predictors of atrial fibrillation progression, J. Am. Heart Assoc. 8
(20) (2019) e012554.

Z. Kalarus, G.H. Mairesse, A. Sokal, G. Boriani, B. Sredniawa, R. Casado-Arroyo,
et al., Searching for atrial fibrillation: looking harder, looking longer, and in
increasingly sophisticated ways. an EHRA position paper, Europace 25 (1) (2023)
185-198.

E.Y. Ding, G.M. Marcus, D.D. McManus, Emerging technologies for identifying
atrial fibrillation, Circ. Res. 127 (1) (2020) 128-142.

U. Satija, B. Ramkumar, M.S. Manikandan, A review of signal processing

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
techniques for electrocardiogram signal quality assessment, IEEE Rev. Biomed.
Eng. 11 (2018) 36-52.


https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb2
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb2
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb2
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb2
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb2
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb2
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb2
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb2
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb2
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb2
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb2
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb3
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb3
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb3
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb3
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb3
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb4
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb4
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb4
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb4
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb4
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb5
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb5
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb5
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb6
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb6
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb6
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb6
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb6
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb7
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb7
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb7
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb7
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb7
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb7
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb7
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb8
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb8
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb8
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb9
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb9
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb9
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb9
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb9

A. Huerta et al.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

K. van der Bijl, M. Elgendi, C. Menon, Automatic ECG quality assessment
techniques: A systematic review, Diagnostics (Basel) 12 (11) (2022).

F. Liu, S. Xia, S. Wei, L. Chen, Y. Ren, X. Ren, Z. Xu, S. Ai, C. Liu, Wearable
electrocardiogram quality assessment using Wavelet scattering and LSTM, Front.
Physiol. 13 (2022) 905447.

A. Huerta, A. Martinez-Rodrigo, V. Bertomeu-Gonzalez, A. Quesada, J.J. Rieta,
R. Alcaraz, A deep learning approach for featureless robust quality assessment
of intermittent atrial fibrillation recordings from portable and wearable devices,
Entropy (Basel) 22 (7) (2020).

J. Chai, H. Zeng, A. Li, E.W. Ngai, Deep learning in computer vision: A critical
review of emerging techniques and application scenarios, Mach. Learn. Appl. 6
(2021) 100134.

T.J. Jun, H.M. Nguyen, D. Kang, et al., ECG arrhythmia classification using a
2-D convolutional neural network, 2018, arXiv preprint arXiv:1804.06812.

Q. Zhang, L. Fu, L. Gu, A cascaded convolutional neural network for assessing
signal quality of dynamic ECG, Comput. Math. Methods Med. 2019 (2019)
7095137.

Z. Zhao, C. Liu, Y. Li, Y. Li, J. Wang, B.-S. Lin, J. Li, Noise rejection for wearable
ECGs using modified frequency slice wavelet transform and convolutional neural
networks, IEEE Access 7 (2019) 34060-34067.

G. Liu, X. Han, L. Tian, W. Zhou, H. Liu, ECG quality assessment based on hand-
crafted statistics and deep-learned S-transform spectrogram features, Comput.
Methods Programs Biomed. 208 (2021) 106269.

B.K. Pradhan, B.C. Neelappu, J. Sivaraman, D. Kim, K. Pal, et al., A review on
the applications of time-frequency methods in ECG analysis, J. Healthc. Eng.
2023 (2023).

A.J. Dunn, M.H. ElRefai, P.R. Roberts, S. Coniglio, B.M. Wiles, A.B. Zemkoho,
Deep learning methods for screening patients’ S-ICD implantation eligibility,
Artif. Intell. Med. 119 (2021) 102139.

H.-L. Chan, H.-W. Chang, W.-Y. Hsu, P.-J. Huang, S.-C. Fang, Convolutional
neural network for individual identification using phase space reconstruction of
electrocardiogram, Sensors 23 (6) (2023) 3164.

J. Behar, J. Oster, Q. Li, G.D. Clifford, ECG signal quality during arrhythmia and
its application to false alarm reduction, IEEE Trans. Biomed. Eng. 60 (6) (2013)
1660-1666.

S.K. Bashar, E. Ding, A.J. Walkey, D.D. McManus, K.H. Chon, Noise detection in
electrocardiogram signals for intensive care unit patients, IEEE Access 7 (2019)
88357-88368.

M.R. Afzal, J. Mease, T. Koppert, T. Okabe, J. Tyler, M. Houmsse, R.S. Augostini,
R. Weiss, J.D. Hummel, S.J. Kalbfleisch, E.G. Daoud, Incidence of false-positive
transmissions during remote rhythm monitoring with implantable loop recorders,
Heart Rhythm 17 (1) (2020) 75-80.

B.J. Drew, P. Harris, J.K. Zégre-Hemsey, T. Mammone, D. Schindler, R. Salas-
Boni, Y. Bai, A. Tinoco, Q. Ding, X. Hu, Insights into the problem of alarm
fatigue with physiologic monitor devices: A comprehensive observational study
of consecutive intensive care unit patients, PLoS One 9 (10) (2014) e110274.
X. Zhang, J. Li, Z. Cai, L. Zhao, C. Liu, Deep learning-based signal quality
assessment for wearable ECGs, IEEE Instrum. Meas. Mag. 25 (5) (2022) 41-52.
J. Rédenas, M. Garcia, R. Alcaraz, J.J. Rieta, Combined nonlinear analysis
of atrial and ventricular series for automated screening of atrial fibrillation,
Complexity 2017 (2017).

G.D. Clifford, C. Liu, B. Moody, H.L. Li-wei, I. Silva, Q. Li, A. Johnson,
R.G. Mark, AF classification from a short single lead ECG recording: The
PhysioNet/Computing in cardiology challenge 2017, in: 2017 Computing in
Cardiology (CinC), 2017, pp. 1-4.

A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark,
J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit,
and PhysioNet: components of a new research resource for complex physiologic
signals, Circulation 101 (23) (2000) E215-20.

A. Albaba, N. Simdes-Capela, Y. Wang, R.C. Hendriks, W. De Raedt, C. Van Hoof,
Assessing the signal quality of electrocardiograms from varied acquisition
sources: A generic machine learning pipeline for model generation, Comput. Biol.
Med. 130 (2021) 104164.

G. Lenis, N. Pilia, A. Loewe, W.H.W. Schulze, O. Déssel, Comparison of baseline
wander removal techniques considering the preservation of ST changes in the
ischemic ECG: A simulation study, Comput. Math. Methods Med. 2017 (2017)
9295029.

M. Garcia, M. Martinez-Iniesta, J. Rddenas, J.J. Rieta, R. Alcaraz, A
novel wavelet-based filtering strategy to remove powerline interference from
electrocardiograms with atrial fibrillation, Physiol. Meas. 39 (11) (2018) 115006.
J. de Pedro-Carracedo, D. Fuentes-Jimenez, A.M. Ugena, A.P. Gonzalez-
Marcos, Phase space reconstruction from a biological time series: A
photoplethysmographic signal case study, Appl. Sci. 10 (4) (2020) 1430.

S. Roy, D.P. Goswami, A. Sengupta, Geometry of the Poincaré plot can segregate
the two arms of autonomic nervous system - a hypothesis, Med. Hypotheses 138
(2020) 109574.

Y. Li, X. Tang, Z. Xu, H. Yan, A novel approach to phase space reconstruction
of single lead ECG for QRS complex detection, Biomed. Signal Process. Control
39 (2018) 405-415.

11

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Biomedical Signal Processing and Control 91 (2024) 105920

M. Brennan, M. Palaniswami, P. Kamen, Do existing measures of Poincaré plot
geometry reflect nonlinear features of heart rate variability? IEEE Trans. Biomed.
Eng. 48 (11) (2001) 1342-1347.

C. Yan, P. Li, C. Liu, X. Wang, C. Yin, L. Yao, Novel gridded descriptors of
Poincaré plot for analyzing heartbeat interval time-series, Comput. Biol. Med.
109 (2019) 280-289.

J. Cai, J. Luo, S. Wang, S. Yang, Feature selection in machine learning: A new
perspective, Neurocomputing 300 (2018) 70-79.

L. Alzubaidi, J. Zhang, A.J. Humaidi, A. Al-Dyjaili, Y. Duan, O. Al-Shamma,
J. Santamaria, M.A. Fadhel, M. Al-Amidie, L. Farhan, Review of deep learning:
Concepts, CNN architectures, challenges, applications, future directions, J. Big
Data 8 (2021) 1-74.

M. Gu, Y. Zhang, Y. Wen, G. Ai, H. Zhang, P. Wang, G. Wang, A lightweight
convolutional neural network hardware implementation for wearable heart rate
anomaly detection, Comput. Biol. Med. 155 (2023) 106623.

S. Somani, A.J. Russak, F. Richter, S. Zhao, A. Vaid, F. Chaudhry, J.K. De Freitas,
N. Naik, R. Miotto, G.N. Nadkarni, J. Narula, E. Argulian, B.S. Glicksberg,
Deep learning and the electrocardiogram: review of the current state-of-the-art,
Europace 23 (8) (2021) 1179-1191.

M.A. Little, G. Varoquaux, S. Saeb, L. Lonini, A. Jayaraman, D.C. Mohr, K.P.
Kording, Using and understanding cross-validation strategies. perspectives on
Saeb et al., GigaScience 6 (5) (2017) 1-6.

S. Saeb, L. Lonini, A. Jayaraman, D.C. Mohr, K.P. Kording, The need to
approximate the use-case in clinical machine learning, Gigascience 6 (5) (2017)
gix019.

G.S. Collins, J.B. Reitsma, D.G. Altman, K.G.M. Moons, TRIPOD Group, Trans-
parent reporting of a multivariable prediction model for individual prognosis or
diagnosis (TRIPOD): the TRIPOD statement, Circulation 131 (2) (2015) 211-219.
J.M. Johnson, T.M. Khoshgoftaar, Survey on deep learning with class imbalance,
J. Big Data 6 (1) (2019) 1-54.

C.W. Bartlett, J. Bossenbroek, Y. Ueyama, P. McCallinhart, O.A. Peters, D.A.
Santillan, M.K. Santillan, A.J. Trask, W.C. Ray, Invasive or more direct measure-
ments can provide an objective early-stopping ceiling for training deep neural
networks on non-invasive or less-direct biomedical data, SN Comput. Sci. 4 (2)
(2023) 1-12.

D. Chicco, G. Jurman, The advantages of the matthews correlation coefficient
(MCC) over F1 score and accuracy in binary classification evaluation, BMC
Genom. 21 (1) (2020) 6.

E. Brzozowska, M. Borowska, Selection of phase space reconstruction parameters
for EMG signals of the uterus, Stud. Logic Gramm. Rhetor. 47 (1) (2016) 47-59.
N. Ilakiyaselvan, A.N. Khan, A. Shahina, Reconstructed phase space portraits for
detecting brain diseases using deep learning, Biomed. Signal Process. Control 71
(2022) 103278.

M. Chen, Y. Fang, X. Zheng, Phase space reconstruction for improving the
classification of single trial EEG, Biomed. Signal Process. Control 11 (2014)
10-16.

Y. Li, X. Tang, Grid mapping: a novel method of signal quality evaluation
on a single lead electrocardiogram, Australas. Phys. Eng. Sci. Med. 40 (2017)
895-907.

G. Manis, M. Aktaruzzaman, R. Sassi, Low computational cost for sample entropy,
Entropy 20 (1) (2018) 61.

L.P. Arts, E.L. van den Broek, The fast continuous wavelet transformation (fCWT)
for real-time, high-quality, noise-resistant time—frequency analysis, Nat. Comput.
Sci. 2 (1) (2022) 47-58.

U. Satija, B. Ramkumar, M.S. Manikandan, Automated ECG noise detection and
classification system for unsupervised healthcare monitoring, IEEE J. Biomed.
Health Inform. 22 (2018) 722-732.

D. Yoon, H.S. Lim, K. Jung, T.Y. Kim, S. Lee, Deep learning-based electrocardio-
gram signal noise detection and screening model, Healthc. Inform. Res. 25 (3)
(2019) 201-211.

H. Halvaei, E. Svennberg, L. Sornmo, M. Stridh, Identification of transient noise
to reduce false detections in screening for atrial fibrillation, Front. Physiol. 12
(2021) 672875.

H. Dogan, R.O. Dogan, A comprehensive review of computer-based techniques
for R-peaks/QRS complex detection in ECG signal, Arch. Comput. Methods Eng.
1 (2023) 1-19.

K. Weimann, T.O. Conrad, Transfer learning for ECG classification, Sci. Rep. 11
(1) (2021) 1-12.

L.G. Portney, Foundations of Clinical Research: Applications to Evidence-Based
Practice, FA Davis, 2020, chapter 33 - Diagnostic Accuracy.

N. Marwan, K.H. Kraemer, Trends in recurrence analysis of dynamical systems,
Eur. Phys. J. Spec. Top. 232 (1) (2023) 5-27.

H. Ding, S. Crozier, S. Wilson, Optimization of Euclidean distance threshold
in the application of recurrence quantification analysis to heart rate variability
studies, Chaos Solitons Fractals 38 (5) (2008) 1457-1467.

S. Martin-Gonzélez, J.L. Navarro-Mesa, G. Juli4-Serd4, G.M. Ramirez-Avila, A.G.
Ravelo-Garcfa, Improving the understanding of sleep apnea characterization
using recurrence quantification analysis by defining overall acceptable values
for the dimensionality of the system, the delay, and the distance threshold, PLoS
One 13 (4) (2018) e0194462.


http://refhub.elsevier.com/S1746-8094(23)01353-8/sb10
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb10
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb10
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb11
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb11
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb11
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb11
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb11
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb12
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb12
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb12
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb12
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb12
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb12
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb12
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb13
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb13
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb13
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb13
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb13
http://arxiv.org/abs/1804.06812
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb15
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb15
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb15
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb15
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb15
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb16
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb16
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb16
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb16
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb16
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb17
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb17
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb17
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb17
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb17
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb18
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb18
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb18
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb18
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb18
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb19
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb19
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb19
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb19
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb19
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb20
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb20
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb20
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb20
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb20
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb21
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb21
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb21
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb21
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb21
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb22
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb22
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb22
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb22
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb22
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb23
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb23
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb23
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb23
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb23
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb23
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb23
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb24
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb24
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb24
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb24
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb24
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb24
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb24
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb25
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb25
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb25
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb26
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb26
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb26
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb26
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb26
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb27
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb27
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb27
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb27
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb27
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb27
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb27
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb28
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb28
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb28
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb28
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb28
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb28
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb28
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb29
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb29
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb29
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb29
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb29
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb29
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb29
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb30
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb30
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb30
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb30
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb30
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb30
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb30
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb31
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb31
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb31
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb31
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb31
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb32
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb32
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb32
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb32
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb32
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb33
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb33
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb33
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb33
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb33
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb34
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb34
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb34
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb34
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb34
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb35
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb35
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb35
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb35
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb35
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb36
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb36
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb36
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb36
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb36
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb37
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb37
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb37
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb38
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb38
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb38
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb38
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb38
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb38
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb38
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb39
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb39
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb39
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb39
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb39
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb40
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb40
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb40
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb40
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb40
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb40
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb40
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb41
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb41
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb41
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb41
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb41
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb42
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb42
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb42
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb42
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb42
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb43
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb43
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb43
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb43
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb43
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb44
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb44
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb44
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb45
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb45
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb45
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb45
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb45
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb45
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb45
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb45
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb45
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb46
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb46
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb46
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb46
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb46
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb47
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb47
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb47
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb48
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb48
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb48
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb48
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb48
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb49
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb49
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb49
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb49
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb49
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb50
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb50
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb50
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb50
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb50
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb51
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb51
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb51
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb52
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb52
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb52
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb52
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb52
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb53
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb53
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb53
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb53
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb53
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb54
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb54
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb54
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb54
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb54
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb55
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb55
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb55
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb55
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb55
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb56
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb56
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb56
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb56
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb56
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb57
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb57
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb57
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb58
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb58
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb58
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb59
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb59
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb59
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb60
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb60
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb60
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb60
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb60
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb61
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb61
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb61
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb61
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb61
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb61
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb61
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb61
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb61

A. Huerta et al.

[62]

[63]

[64]

H. Zhang, C. Liu, Z. Zhang, Y. Xing, X. Liu, R. Dong, Y. He, L. Xia, F.
Liu, Recurrence plot-based approach for cardiac arrhythmia classification using
inception-ResNet-v2, Front. Physiol. 12 (2021) 648950.

H. Zhang, C. Liu, F. Tang, M. Li, D. Zhang, L. Xia, S. Crozier, H. Gan, N. Zhao,
W. Xu, et al., Atrial fibrillation classification based on the 2D representation of
minimal subset ECG and a non-deep neural network, Front. Physiol. 14 (2023)
182.

J. Xie, L. Peng, L. Wei, Y. Gong, F. Zuo, J. Wang, C. Yin, Y. Li, A signal
quality assessment-based ECG waveform delineation method used for wearable
monitoring systems, Med. Biol. Eng. Comput. 59 (10) (2021) 2073-2084.

12

[65]

[66]

[67]

Biomedical Signal Processing and Control 91 (2024) 105920

G. Hirsch, S.H. Jensen, E.S. Poulsen, S. Puthusserypady, Atrial fibrillation
detection using heart rate variability and atrial activity: A hybrid approach,
Expert Syst. Appl. 169 (2021) 114452.

J. Bacevicius, Z. Abramikas, E. Dvinelis, D. Audzijoniene, M. Petrylaite, et al.,
High specificity wearable device with photoplethysmography and six-lead elec-
trocardiography for atrial fibrillation detection challenged by frequent premature
contractions: DoubleCheck-AF, Front. Cardiovasc. Med. 9 (2022) 869730.

H. Xu, W. Yan, K. Lan, C. Ma, D. Wu, A. Wu, Z. Yang, J. Wang, Y. Zang, M.
Yan, Z. Zhang, Assessing electrocardiogram and respiratory signal quality of a
wearable device (SensEcho): Semisupervised machine learning-based validation
study, JMIR Mhealth Uhealth 9 (8) (2021) e25415.


http://refhub.elsevier.com/S1746-8094(23)01353-8/sb62
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb62
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb62
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb62
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb62
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb63
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb63
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb63
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb63
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb63
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb63
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb63
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb64
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb64
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb64
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb64
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb64
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb65
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb65
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb65
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb65
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb65
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb66
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb66
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb66
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb66
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb66
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb66
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb66
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb67
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb67
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb67
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb67
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb67
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb67
http://refhub.elsevier.com/S1746-8094(23)01353-8/sb67

	Single-lead electrocardiogram quality assessment in the context of paroxysmal atrial fibrillation through phase space plots
	Introduction
	Databases
	Methods
	Data preprocessing
	Phase space reconstruction of the ECG signal
	Classification algorithms based on machine learning concepts
	Classification algorithms based on deep learning concepts
	Previous classification algorithms
	Training, validation, and testing of the classification algorithms

	Results
	Discussion
	Main findings 
	Indirect comparison with other previous works 
	Comparison between PS representations 
	Limitations 

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


