36 research outputs found

    Acidentes de trabalho: custos previdenciários e dias de trabalho perdidos

    Get PDF
    OBJETIVO: Estimar a contribuição de benefícios concedidos por acidentes de trabalho dentre o total de benefícios relacionados com a saúde da Previdência Social, focalizando os custos conforme o tipo de benefício, e o impacto sobre a produtividade relativa a dias perdidos de trabalho. MÉTODOS: Utilizam-se registros dos despachos de benefícios do Sistema Único de Benefícios do Instituto Nacional de Seguridade Social da Bahia, em 2000. Acidentes de trabalho foram definidos com o diagnóstico clínico para Causas Externas, Lesões e Envenenamentos (SS-00 a T99) da Classificação Internacional de Doenças 10ª Revisão, e o tipo de benefício que distingue problemas de saúde ocupacionais e não ocupacionais. RESULTADOS: Foram estudados 31.096 benefícios concedidos por doenças ou agravos à saúde, dos quais 2.857 (7,3%) eram devidos a acidentes de trabalho. Maiores proporções foram estimadas entre os trabalhadores da indústria da transformação e construção/eletricidade/gás, 18% do total dos benefícios. Os custos com os benefícios para acidentes de trabalho foram estimados em R8,5milho~es,comaproximadamentemeiomilha~odediasperdidosdetrabalhonoano.CONCLUSO~ES:Apesardoconhecimentodequeessesdadossa~osubenumerados,erestritosaostrabalhadoresqueconseguiramreceberbenefıˊciosrelacionadoscomasauˊde,osachadosrevelamograndeimpactosobreaprodutividadeeoorc\camentodoInstitutoNacionaldePrevide^nciaSocialdeagravosreconhecidoscomoevitaˊveis,reforc\candoanecessidadedesuaprevenc\ca~o.OBJECTIVE:Toestimatetheproportionofoccupationalaccidentbenefitsgrantedwithinthetotalforhealthrelatedsocialsecuritybenefits,viewingthecostsaccordingtobenefittypeandtheimpactonproductivityaccordingtoworkdayslost.METHODS:RecordsofbenefitdecisionsfromtheNationalBenefitsSystemoftheNationalSocialSecurityInstitutefortheStateofBahiain2000wereutilized.OccupationalaccidentsweredefinedinaccordancewiththeclinicaldiagnosesofExternalCauses,InjuriesandPoisoning(SS00toT99)oftheInternationalClassificationofDiseases,10thRevision,andwiththebenefittype,whichdistinguishesbetweenoccupationalandnonoccupationalhealthproblems.RESULTS:Atotalof31,096benefitsgrantedduetoillnessesorhealthproblemswerestudied.Ofthese,2,857(7.38,5 milhões, com aproximadamente meio milhão de dias perdidos de trabalho no ano. CONCLUSÕES: Apesar do conhecimento de que esses dados são sub-enumerados, e restritos aos trabalhadores que conseguiram receber benefícios relacionados com a saúde, os achados revelam o grande impacto sobre a produtividade e o orçamento do Instituto Nacional de Previdência Social de agravos reconhecidos como evitáveis, reforçando a necessidade de sua prevenção.OBJECTIVE: To estimate the proportion of occupational accident benefits granted within the total for health-related social security benefits, viewing the costs according to benefit type and the impact on productivity according to work days lost. METHODS: Records of benefit decisions from the National Benefits System of the National Social Security Institute for the State of Bahia in 2000 were utilized. Occupational accidents were defined in accordance with the clinical diagnoses of External Causes, Injuries and Poisoning (SS-00 to T99) of the International Classification of Diseases, 10th Revision, and with the benefit type, which distinguishes between occupational and non-occupational health problems. RESULTS: A total of 31,096 benefits granted due to illnesses or health problems were studied. Of these, 2,857 (7.3%) were caused by work accidents. Greater proportions were found among workers in the manufacturing, construction, electricity and gas industries, accounting for 18% of the total benefits. The costs of occupational accident benefits were estimated to be R8.5 million, with around half a million work days lost during the year studied. CONCLUSIONS: Despite the fact that these data are under-reported and are restricted to workers who were able to receive health-related benefits, the findings reveal that avoidable health problems have a major impact on productivity and on the budget of the National Social Security Institute, thereby reinforcing the need for their prevention

    Doenças do trabalho e benefícios previdenciários relacionados à saúde, Bahia, 2000

    Get PDF
    OBJECTIVE: To estimate the contribution of work-related diseases to sick leaves due to general and occupational health problems. METHODS: Sociodemographic, occupational and health data from 29,658 records of temporary disability benefits, granted on account of health problems by the Instituto Nacional do Seguro Social (National Institute of Social Security) in the state of Bahia (Northeastern Brazil), were analyzed. All constant ICD-10 clinical diagnoses were taken into consideration, except for those referring to external causes and factors that influence contact with health services. The link between diagnosis and occupation was based on the ICD-10 code and whether the type of compensation was due to a "work-related accident/disease" or not. RESULTS: From all the benefits, 3.1% were granted due to work-related diseases: 70% were musculoskeletal system and connective tissue diseases, while 14.5% were related to the nervous system. In general, benefits granted at more than two times the expected frequency were as follows: tenosynovitis in the manufacturing sector (Proportion Ratio-PR=2.70), carpal tunnel syndrome in the financial intermediation sector (PR=2.43), and lumbar disc degeneration in the transportation, postal service and telecommunications sectors (PR=2.17). However, no causal connection could be established for these diseases, in these activity sectors, in a significant percentage of benefits. CONCLUSIONS: Results suggest the existence of possible occupational risk factors for diseases in these fields of activity, as well as the underreporting of the link between diseases and work, thus disguising the responsibility of companies and the perspective of prevention through work reorganization.OBJETIVO: Estimar la contribución de las enfermedades relacionadas al trabajo en las licencias por problemas de salud en general y ocupacionales. MÉTODOS: Fueron analizados datos sociodemográficos, ocupacionales y de salud referentes a 29.658 registros de los beneficios por incapacidad temporal concedidos por agravamientos a la salud por el Instituto Nacional do Seguro Social, en el estado de Bahia (Nordeste de Brasil), en 2000. Fueron considerados como casos todos los diagnósticos clínicos constantes de CID-10, con excepción de las causas externas y factores que influencian el contacto con los servicios de salud. La vinculación del diagnóstico con la ocupación se baso en el código CID-10 y si la especie de beneficio era "accidentaria". RESULTADOS: De los beneficios, 3,1% fueron concedidos para enfermedades de trabajo: 70% eran enfermedades del sistema osteomuscular y del tejido conjuntivo y 14,5% del sistema nervioso. En general, beneficios concedidos en una frecuencia mas grande que el doble de lo esperado fueron: para tenossinovites en la industria de transformación (Razón de Proporción-RP=2,70), síndrome del túnel del carpo en la intermediación financiera (RP=2,43) y trastornos del disco lumbar en el ramo del transporte, correo y telecomunicaciones (RP=2,17). Sin embargo, no fue establecido nexo causal para estas enfermedades, en estos ramos de actividad, en porcentual significativo de beneficios. CONCLUSÕES: Los resultados sugieren la existencia de posibles factores de riesgo ocupacionales para enfermedades en estos ramos de actividad, como también el sub-registro de la vinculación de las patologías con el trabajo, camuflando la responsabilidad de las empresas y la perspectiva de premención por la reorganización del trabajo.OBJETIVO: Estimar a contribuição das doenças relacionadas ao trabalho nos afastamentos por problemas de saúde em geral e ocupacionais. MÉTODOS: Foram analisados dados sociodemográficos, ocupacionais e de saúde referentes a 29.658 registros dos benefícios por incapacidade temporária concedidos por agravos à saúde pelo Instituto Nacional do Seguro Social, no Estado da Bahia, em 2000. Foram considerados casos todos os diagnósticos clínicos constantes da CID-10, com exceção das causas externas e fatores que influenciam o contato com os serviços de saúde. A vinculação do diagnóstico com a ocupação baseou-se no código CID-10 e se a espécie do benefício era "acidentária". RESULTADOS: Dentre os benefícios, 3,1% foram concedidos para doenças do trabalho: 70% eram doenças do sistema osteomuscular e do tecido conjuntivo e 14,5% do sistema nervoso. No geral, benefícios concedidos numa freqüência maior que o dobro da esperada foram: para tenossinovites na indústria da transformação (Razão de Proporção-RP=2,70), síndrome do túnel do carpo na intermediação financeira (RP=2,43) e transtornos do disco lombar no ramo de transporte, correio e telecomunicações (RP=2,17). Entretanto, não foi estabelecido nexo causal para estas doenças, nesses ramos de atividade, em percentual significativo de benefícios. CONCLUSÕES: Os resultados sugerem a existência de possíveis fatores de risco ocupacionais para enfermidades nesses ramos de atividade, como também o sub-registro da vinculação das patologias com o trabalho, camuflando a responsabilidade das empresas e a perspectiva de prevenção pela reorganização do trabalho

    Occupational accidents : social insurance costs and work days lost

    Get PDF
    OBJETIVO: Estimar a contribuição de benefícios concedidos por acidentes de trabalho dentre o total de benefícios relacionados com a saúde da Previdência Social, focalizando os custos conforme o tipo de benefício, e o impacto sobre a produtividade relativa a dias perdidos de trabalho. MÉTODOS: Utilizam-se registros dos despachos de benefícios do Sistema Único de Benefícios do Instituto Nacional de Seguridade Social da Bahia, em 2000. Acidentes de trabalho foram definidos com o diagnóstico clínico para Causas Externas, Lesões e Envenenamentos (SS-00 a T99) da Classificação Internacional de Doenças 10ª Revisão, e o tipo de benefício que distingue problemas de saúde ocupacionais e não ocupacionais. RESULTADOS: Foram estudados 31.096 benefícios concedidos por doenças ou agravos à saúde, dos quais 2.857 (7,3%) eram devidos a acidentes de trabalho. Maiores proporções foram estimadas entre os trabalhadores da indústria da transformação e construção/eletricidade/gás, 18% do total dos benefícios. Os custos com os benefícios para acidentes de trabalho foram estimados em R8,5milho~es,comaproximadamentemeiomilha~odediasperdidosdetrabalhonoano.CONCLUSO~ES:Apesardoconhecimentodequeessesdadossa~osubenumerados,erestritosaostrabalhadoresqueconseguiramreceberbenefıˊciosrelacionadoscomasauˊde,osachadosrevelamograndeimpactosobreaprodutividadeeoorc\camentodoInstitutoNacionaldePrevide^nciaSocialdeagravosreconhecidoscomoevitaˊveis,reforc\candoanecessidadedesuaprevenc\ca~o.OBJECTIVE:Toestimatetheproportionofoccupationalaccidentbenefitsgrantedwithinthetotalforhealthrelatedsocialsecuritybenefits,viewingthecostsaccordingtobenefittypeandtheimpactonproductivityaccordingtoworkdayslost.METHODS:RecordsofbenefitdecisionsfromtheNationalBenefitsSystemoftheNationalSocialSecurityInstitutefortheStateofBahiain2000wereutilized.OccupationalaccidentsweredefinedinaccordancewiththeclinicaldiagnosesofExternalCauses,InjuriesandPoisoning(SS00toT99)oftheInternationalClassificationofDiseases,10thRevision,andwiththebenefittype,whichdistinguishesbetweenoccupationalandnonoccupationalhealthproblems.RESULTS:Atotalof31,096benefitsgrantedduetoillnessesorhealthproblemswerestudied.Ofthese,2,857(7.38,5 milhões, com aproximadamente meio milhão de dias perdidos de trabalho no ano. CONCLUSÕES: Apesar do conhecimento de que esses dados são sub-enumerados, e restritos aos trabalhadores que conseguiram receber benefícios relacionados com a saúde, os achados revelam o grande impacto sobre a produtividade e o orçamento do Instituto Nacional de Previdência Social de agravos reconhecidos como evitáveis, reforçando a necessidade de sua prevenção.OBJECTIVE: To estimate the proportion of occupational accident benefits granted within the total for health-related social security benefits, viewing the costs according to benefit type and the impact on productivity according to work days lost. METHODS: Records of benefit decisions from the National Benefits System of the National Social Security Institute for the State of Bahia in 2000 were utilized. Occupational accidents were defined in accordance with the clinical diagnoses of External Causes, Injuries and Poisoning (SS-00 to T99) of the International Classification of Diseases, 10th Revision, and with the benefit type, which distinguishes between occupational and non-occupational health problems. RESULTS: A total of 31,096 benefits granted due to illnesses or health problems were studied. Of these, 2,857 (7.3%) were caused by work accidents. Greater proportions were found among workers in the manufacturing, construction, electricity and gas industries, accounting for 18% of the total benefits. The costs of occupational accident benefits were estimated to be R8.5 million, with around half a million work days lost during the year studied. CONCLUSIONS: Despite the fact that these data are under-reported and are restricted to workers who were able to receive health-related benefits, the findings reveal that avoidable health problems have a major impact on productivity and on the budget of the National Social Security Institute, thereby reinforcing the need for their prevention

    Mortality, years of life lost, and incidence of occupational accidents in the State of Bahia, Brazil

    Get PDF
    Neste estudo estimam-se a mortalidade por acidentes de trabalho, anos potenciais de vida perdidos, e também a incidência de acidentes de trabalho graves (mais de 15 dias de afastamento), na Bahia, Brasil, no ano 2000. Fatores de correção foram elaborados comparando-se diferentes fontes de dados. Foram empregados benefícios da Previdência Social do Sistema Único de Benefícios (SUB), do Sistema de Informações sobre Mortalidade (SIM) do Ministério da Saúde, e Censo Demográfico. A mortalidade por acidentes de trabalho foi de 0,79 x 100 mil trabalhadores, com base no SIM, mas com o SUB a estimativa é de 13,17 x 100 mil. Assumindo-se esta medida para todos os trabalhadores, estima-se um fator de correção para o SIM de 16,67. A estimativa de anos potenciais de vida perdidos foi de 23.249 e a incidência de acidentes de trabalho graves com pelo menos duas semanas de afastamento foi de 2,3%. Acidentes de trabalho são evitáveis, mas ainda comuns no país. A subenumeração é expressiva, e estatísticas corrigidas deveriam ser estimadas e divulgadas contribuindo para a priorização desse negligenciado problema de saúde pública.This study of occupational accidents presents estimates for mortality, years of potential life lost, and cumulative incidence of severe cases (over 15 workdays lost) in Bahia State, Brazil, 2000. A correction factor was produced by comparing different data sources. Data were taken from compensation claims in the National Social Security Unified Benefits System (SUB), death certificates from the Ministry of Health Mortality Information System, and national census. Occupational accident-related mortality was estimated as 0.79 per 100,000 workers using the Mortality Information System, but increased to 13.17 per 100,000 using the SUB database. Assuming the latter result for the entire workforce produced a correction factor of 16.67 for the Mortality Information System database. Years of potential life lost were 23,249, and the cumulative incidence of severe occupational accidents was 2.3%. Occupational accidents are preventable, but still common in Brazil. Underreporting is widespread, and corrected statistics need to be published, thereby turning this neglected public health problem into a policy priority

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore