698 research outputs found

    Diastolic tolerance to systolic pressures closely reflects systolic performance in patients with coronary heart disease

    Get PDF
    In animal experiments, elevating systolic pressures induces diastolic dysfunction and may contribute to congestion, a finding not yet translated to humans. Coronary surgery patients (63 ± 8 years) were studied with left ventricular (LV) pressure (n = 17) or pressure-volume (n = 3) catheters, immediately before cardiopulmonary bypass. Single-beat graded pressure elevations were induced by clamping the ascending aorta. Protocol was repeated after volume loading (n = 7). Consecutive patients with a wide range of systolic function were included. Peak isovolumetric LV pressure (LVP(iso)) ranged from 113 to 261 mmHg. With preserved systolic function, LVP elevations neither delayed relaxation nor increased filling pressures. With decreasing systolic function, diastolic tolerance to afterload progressively disappeared: relaxation slowed and filling pressures increased (diastolic dysfunction). In severely depressed systolic function, filling pressures increased even with minor LVP elevations, suggesting baseline load-dependent elevation of diastolic pressures. The magnitude of filling pressure elevation induced in isovolumetric heartbeats was closely and inversely related to systolic performance, evaluated by LVP(iso) (r = -0.96), and directly related to changes in the time constant of relaxation τ (r = 0.95). The maximum tolerated systolic LVP (without diastolic dysfunction) was similarly correlated with LVP(iso) (r = 0.99). Volume loading itself accelerated relaxation, but augmented afterload-induced upward shift of filling pressures (7.9 ± 3.7 vs. 3.0 ± 1.5; P < 0.01). The normal human response to even markedly increased systolic pressures is no slowing of relaxation and preservation of normal filling pressures. When cardiac function deteriorates, the LV becomes less tolerant, responding with slowed relaxation and increased filling pressures. This increase is exacerbated by volume loading

    Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents

    Get PDF
    Maleimides remain the reagents of choice for the preparation of therapeutic and imaging protein conjugates despite the known instability of the resulting products that undergo thiol-exchange reactions in vivo\textit{in vivo}. Here we present the rational design of carbonylacrylic reagents for chemoselective cysteine bioconjugation. These reagents undergo rapid thiol Michael-addition under biocompatible conditions in stoichiometric amounts. When using carbonylacrylic reagents equipped with PEG or fluorophore moieties, this method enables access to protein and antibody conjugates precisely modified at pre-determined sites. Importantly, the conjugates formed are resistant to degradation in plasma and are biologically functional, as demonstrated by the selective imaging and detection of apoptotic and HER2+ cells, respectively. The straightforward preparation, stoichiometric use and exquisite cysteine selectivity of the carbonylacrylic reagents combined with the stability of the products and the availability of biologically relevant cysteine-tagged proteins make this method suitable for the routine preparation of chemically defined conjugates for in vivo\textit{in vivo} applications.FAPESP (Grant IDs: 2012/22274-2; BEPE 2015/07509-1, 2013/25504-1), Xunta de Galicia, FCT Portugal (FCT Investigator, SFRH/BPD/103172/2014 Postdoctoral fellowship, SFRH/BD/111556/2015 PhD Studentship), European Union (Marie-Sklodowska Curie ITN Protein Conjugates), Engineering and Physical Sciences Research Council, MECD (‘Salvador Madariaga’ mobility grant PRX15/00638), MINECO (CTQ2015-70524-R, RYC-2013-14706 ), Royal Society, European Research Council Starting Grant (TagIt

    Endogenous production of ghrelin and beneficial effects of its exogenous administration in monocrotaline-induced pulmonary hypertension

    Get PDF
    We investigated the endogenous production of ghrelin as well as cardiac and pulmonary vascular effects of its administration in a rat model of monocrotaline (MCT)-induced pulmonary hypertension (PH). Adult Wistar rats randomly received a subcutaneous injection of MCT (60 mg/kg) or an equal volume of vehicle. One week later, animals were randomly assigned to receive a subcutaneous injection of ghrelin (100 mug/kg bid for 2 wk) or saline. Four groups were analyzed: normal rats treated with ghrelin (n = 7), normal rats injected with saline (n = 7), MCT rats treated with ghrelin (n = 9), and MCT rats injected with saline (n = 9). At 22-25 days, right ( RV) and left ventricular (LV) pressures were measured, heart and lungs were weighted, and samples were collected for histological and molecular analysis. Endogenous production of ghrelin was almost abolished in normal rats treated with ghrelin. In MCT-treated animals, pulmonary expression of ghrelin was preserved, and RV myocardial expression was increased more than 20 times. In these animals, exogenous administration of ghrelin attenuated PH, RV hypertrophy, wall thickening of peripheral pulmonary arteries, and RV diastolic disturbances and ameliorated LV dysfunction, without affecting its endogenous production. In conclusion, decreased tissular expression of ghrelin in healthy animals but not in PH animals suggests a negative feedback in the former that is lost in the latter. A selective increase of ghrelin mRNA levels in the RV of animals with PH might indicate distinct regulation of its cardiac expression. Finally, ghrelin administration attenuated MCT-induced PH, pulmonary vascular remodeling, and RV hypertrophy, indicating that it may modulate PH

    Ethnobotanical knowledge is vastly under-documented in northwestern South America

    Get PDF
    A main objective of ethnobotany is to document traditional knowledge about plants before it disappears. However, little is known about the coverage of past ethnobotanical studies and thus about how well the existing literature covers the overall traditional knowledge of different human groups. To bridge this gap, we investigated ethnobotanical data-collecting efforts across four countries (Colombia, Ecuador, Peru, Bolivia), three ecoregions (Amazon, Andes, Chocó), and several human groups (including Amerindians, mestizos, and Afro-Americans). We used palms (Arecaceae) as our model group because of their usefulness and pervasiveness in the ethnobotanical literature. We carried out a large number of field interviews (n = 2201) to determine the coverage and quality of palm ethnobotanical data in the existing ethnobotanical literature (n = 255) published over the past 60 years. In our fieldwork in 68 communities, we collected 87,886 use reports and documented 2262 different palm uses and 140 useful palm species. We demonstrate that traditional knowledge on palm uses is vastly under-documented across ecoregions, countries, and human groups. We suggest that the use of standardized data-collecting protocols in wide-ranging ethnobotanical fieldwork is a promising approach for filling critical information gaps. Our work contributes to the Aichi Biodiversity Targets and emphasizes the need for signatory nations to the Convention on Biological Diversity to respond to these information gaps. Given our findings, we hope to stimulate the formulation of clear plans to systematically document ethnobotanical knowledge in northwestern South America and elsewhere before it vanishesThis study was funded by the European Union, 7th Framework Programme (contract no. 212631), the Russel E. Train Education for Nature Program of the WWF (to NPZ), the Anne S. Chatham fellowship of the Garden Club of America (to NPZ), and the Universidad Autónoma de Madrid travel grants programme (to RCL

    Searches for Long Lived Neutral Particles

    Full text link
    An intriguing possibility for TeV scale physics is the existence of neutral long lived particles (LOLIPs) that subsequently decay into SM states. Such particles are many cases indistinguishable from missing transverse energy (MET) at colliders. We propose new methods to search for these particles using neutrino telescopes. We study their detection prospects, assuming production either at the LHC or through dark matter (DM) annihilations in the Sun and the Earth. We find that the sensitivity for LOLIPs produced at the LHC is limited by luminosity and detection energy thresholds. On the other hand, in the case of DM annihilation into LOLIPs, the sensitivity of neutrino telescopes is promising and may extend beyond the reach of upcoming direct detection experiments. In the context of low scale hidden sectors weakly coupled to the SM, such indirect searches allow to probe couplings as small as 10^-15.Comment: 22 pages, 6 figure

    Ghrelin reverses molecular, structural and hemodynamic alterations of the right ventricle in pulmonary hypertension

    Get PDF
    Ghrelin is an endogenous peptide that has a dual effect by activating specific receptors and by stimulating release of growth hormone. There is increasing evidence that ghrelin has a potent vasodilator effect. Recently, we demonstrated that exogenous administration of ghrelin modulates its endogenous levels and attenuates the majority of alterations induced by monocrotaline (MCT). In the present study, we evaluate the effects of chronic administration of ghrelin on hemodynamic and morphometric parameters of the right ventricle, as well as on myocardial levels of SERCA2a and endothelin-1. Adult Wistar rats were injected with MCT (60 mg/kg, sc) or just the vehicle (day 0). One week later, the animals treated with MCT were randomly divided into two groups and treated with ghrelin (100 microg/kg, bid, sc) or with a similar volume of vehicle. Between days 21-25 the animals were instrumented to record right ventricular (RV) pressures and samples were collected for morphological and molecular analysis. Ghrelin treatment attenuated the effects of MCT, namely: RV myocyte fiber diameter, pulmonary vascular remodeling (evaluated by % medial wall thickness of peripheral arteries), RV peak systolic pressure, RV end-diastolic pressure, time constant tau, and SERCA2a and endothelin-1 mRNA levels. Chronic ghrelin administration attenuates MCT-induced pulmonary hypertension, vascular remodeling and RV hypertrophy. These results suggest a potential therapeutic role for the ghrelin-growth hormone axis in pulmonary hypertension

    Neuronal circuitry for pain processing in the dorsal horn

    Get PDF
    Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region
    corecore