405 research outputs found

    Aeration, Phosphorous, and Lime Affect Nitrogen Mineralization in Imperfectly Drained Forest Soils

    Get PDF
    Unamended, limed, and phosphorus-enriched Caddo, Beauregard, and Wrightsville silt loams (A1 horizon) were incubated for six months at room temperature under two moisture regimes. At field capacity, unamended soils lost 0.7% of organic matter and converted 166 ppm of organic nitrogen to inorganic forms. Ninety-five percent of the converted nitrogen was present as N₄-H or NO₃-N. Limed and phosphorus-treated soils at field capacity lost about 1.0% of organic matter and accumulated 191 to 201 ppm of inorganic nitrogen. Submerged soils lost very little organic matter and accumulated only 24 to 28 ppm of inorganic nitrogen. There was a loss of 35 to 78 ppm of nitrogen from the submerged soils, presumably through denitrification

    Trends in source gases

    Get PDF
    Source gases are defined as those gases that, by their breakdown, introduce into the stratosphere halogen, hydrogen, and nitrogen compounds that are important in stratospheric ozone destruction. Given here is an update of the existing concentration time series for chlorocarbons, nitrous oxide, and methane. Also reviewed is information on halogen containing species and the use of these data for establishing trends. Also reviewed is evidence on trends in trace gases that influence tropospheric chemistry and thus the tropospheric lifetimes of source gases, such as carbon dioxide, carbon monoxide, or nitrogen oxides. Much of the information is given in tabular form

    Ultrahigh-throughput generation and characterization of cellular aggregates in laser-ablated microwells of poly(dimethylsiloxane)

    Get PDF
    Aggregates of cells, also known as multicellular aggregates (MCAs), have been used as microscale tissues in the fields of cancer biology, regenerative medicine, and developmental biology for many decades. However, small MCAs (fewer than 100 cells per aggregate) have remained challenging to manufacture in large quantities at high uniformity. Forced aggregation into microwells offers a promising solution for forming consistent aggregates, but commercial sources of microwells are expensive, complicated to manufacture, or lack the surface packing densities that would significantly improve MCA production. To address these concerns, we custom-modified a commercial laser cutter to provide complete control over laser ablation and directly generate microwells in a poly(dimethylsiloxane) (PDMS) substrate. We achieved ultra rapid microwell production speeds (>50000 microwells per h) at high areal packing densities (1800 microwells per cm2) and over large surface areas for cell culture (60 cm2). Variation of the PDMS substrate distance from the laser focal plane during ablation allowed for the generation of microwells with a variety of sizes, contours, and aspect ratios. Casting of high-fidelity microneedle masters in polyurethane allowed for non-ablative microwell reproduction through replica molding. MCAs of human bone marrow derived mesenchymal stem cells (hMSCs), murine 344SQ metastatic adenocarcinoma cells, and human C4-2 prostate cancer cells were generated in our system with high uniformity within 24 hours, and computer vision software aided in the ultra-high-throughput analysis of harvested aggregates. Moreover, MCAs maintained invasive capabilities in 3D migration assays. In particular, 344SQ MCAs demonstrated epithelial lumen formation on Matrigel, and underwent EMT and invasion in the presence of TGF-β. We expect this technique to find broad utility in the generation and cultivation of cancer cell aggregates, primary cell aggregates, and embryoid bodies

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin burn propagation into surrounding cold fuel, enabling the possibility of high energy gain. While scientific breakeven (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    The Micropolitics of Obesity: Materialism, Markets and Food Sovereignty

    Get PDF
    This article shifts focus from an individualised and anthropocentric perspective on obesity, and uses a new materialist analysis to explore the assemblages of materialities producing fat and slim bodies. We report data from a study of adults’ accounts of food decision-making and practices, investigating circulations of matter and desires that affect the production, distribution, accumulation and dispersal of fat, and disclose a micropolitics of obesity, which affects bodies in both ‘becoming-fat’ and ‘becoming-slim’ assemblages. These assemblages comprise bodies, food, fat, physical environments, food producers and processing industries, supermarkets and other food retailers and outlets, diet regimens and weight loss clubs, and wider social, cultural and economic formations, along with the thoughts, feelings, ideas and human desires concerning food consumption and obesity. The analysis reveals the significance of the marketisation of food, and discusses whether public health responses to obesity should incorporate a food sovereignty component

    Wei Hua's Four Parameter Potential Comments and Computation of Moleculer Constants \alpha_e and \omega_e x_e

    Full text link
    The value of adjustable parameter CC and the four-parameter potential U(r)=De[1−exp[−b(r−re)]1−Cexp[−b(r−re)]]2U(r) = D_{e}\left [ \frac{1-{exp}[-b(r-r_{e})]}{1-C{exp} [-b(r-r_{e})]} \right ]^{2} has been expressed in terms of molecular parameters and its significance has been brought out. The potential so constructed, with CC derived from the molecular parameters, has been applied to ten electronic states in addition to the states studied by Wei Hua. Average mean deviation has been found to be 3.47 as compared to 6.93, 6.95 and 9.72 obtained from Levine2, Varshni and Morse potentials, respectively. Also Dunham's method has been used to express rotation-vibration interaction constant (αe)(\alpha_{e}) and anharmonocity constant (ωexe)(\omega_{e}x_{e}) in terms of CC and other molecular constants. These relations have been employed to determine these quantities for 37 electronic states. For αe\alpha_{e}, the average mean deviation is 7.2% compared to 19.7% for Lippincott's potential which is known to be the best to predict the values. Average mean deviation for (ωexe)(\omega_{e}x_{e}) turns out to be 17.4% which is almost the same as found from Lippincott's potential function.Comment: 19 RevTex Pages, 1 Ps figure, submitted to J. Phys.

    The H4K20 demethylase DPY-21 regulates the dynamics of condensin DC binding

    Get PDF
    Condensin is a multi-subunit SMC complex that binds to and compacts chromosomes. Unlike cohesin, in vivo regulators of condensin binding dynamics remain unclear. Here we addressed this question using C. elegans condensin DC, which specifically binds to and represses transcription of both X chromosomes in hermaphrodites for dosage compensation. Mutants of several chromatin modifiers that regulate H4K20me and H4K16ac cause varying degrees of X chromosome derepression. We used fluorescence recovery after photobleaching (FRAP) to analyze how these modifiers regulate condensin DC binding dynamics in vivo. We established FRAP using the SMC4 homolog DPY-27 and showed that a well-characterized ATPase mutation abolishes its binding. The greatest effect on condensin DC dynamics was in a null mutant of the H4K20me2 demethylase DPY-21, where the mobile fraction of the complex reduced from ∼30% to 10%. In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Separation of catalytic and non-catalytic activity is also supported by Hi-C data in the dpy-21 null mutant. Together, our results indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC binding, which is important for transcription repression
    • …
    corecore