160 research outputs found

    Effectiveness of a procalcitonin algorithm to guide antibiotic therapy in respiratory tract infections outside of study conditions: a post-study survey

    Get PDF
    All published evidence on procalcitonin (PCT)-guided antibiotic therapy was obtained in trials where physicians knew that they were being monitored, possibly resulting in higher adherence to the PCT algorithm. This study investigates the effectiveness of PCT guidance in an observational quality control survey. We monitored antibiotic therapy and algorithm adherence in consecutive patients with respiratory tract infections admitted to the Kantonsspital Aarau, Switzerland, between May 2008 and February 2009. The results were compared to the site-specific results of the former ProHOSP study. Overall and more pronounced for patients with community-acquired pneumonia, the median duration of antibiotic treatment in this survey was shorter than the ProHOSP control patients (6 vs. 7days, P = 0.048 and 7 vs. 9days, P < 0.001). In 72.5% of patients, antibiotics were administered according to the prespecified PCT algorithm. No significant differences concerning adverse medical outcome could be detected. This study mirrors the use of PCT-guided antibiotic therapy in clinical practice, outside of trial conditions. If algorithm adherence is reinforced, antibiotic exposure can be markedly reduced with subsequent reduction of antibiotic-associated side effects and antibiotic resistance. The integration of the PCT algorithm into daily practice requires ongoing reinforcement and involves a learning process of the prescribing physician

    The potential impact of biomarker-guided triage decisions for patients with urinary tract infections

    Get PDF
    Objectives: Current guidelines provide limited evidence as to which patients with urinary tract infection (UTI) require hospitalisation. We evaluated the currently used triage routine and tested whether a set of criteria including biomarkers like proadrenomedullin (proADM) and urea have the potential to improve triage decisions. Methods: Consecutive adults with UTI presenting to our emergency department (ED) were recruited and followed for 30days. We defined three virtual triage algorithms, which included either guideline-based clinical criteria, optimised admission proADM or urea levels in addition to a set of clinical criteria. We compared actual treatment sites and observed adverse events based on the physician judgment with the proportion of patients assigned to treatment sites according to the three virtual algorithms. Adverse outcome was defined as transfer to the intensive care unit (ICU), death, recurrence of UTI or rehospitalisation for any reason. Results: We recruited 127 patients (age 61.8±20.8 years; 73.2% females) and analysed the data of 123 patients with a final diagnosis of UTI. Of these 123 patients, 27 (22.0%) were treated as outpatients. Virtual triage based only on clinical signs would have treated only 22 (17.9%) patients as outpatients, with higher proportions of outpatients equally in both biomarker groups (29.3%; p=0.02). There were no significant differences in adverse events between outpatients according to the clinical (4.5%), proADM (2.8%) or urea groups (2.8%). The mean length of stay was 6.6days, including 2.2days after reaching medical stability. Conclusions: Adding biomarkers to clinical criteria has the potential to improve risk-based triage without impairing safety. Current rates of admission and length of stay could be shortened in patients with UT

    Transmission of Staphylococcus aureus between health-care workers, the environment, and patients in an intensive care unit: a longitudinal cohort study based on whole-genome sequencing

    Get PDF
    Background: Health-care workers have been implicated in nosocomial outbreaks of Staphylococcus aureus, but the dearth of evidence from non-outbreak situations means that routine health-care worker screening and S aureus eradication are controversial. We aimed to determine how often S aureus is transmitted from health-care workers or the environment to patients in an intensive care unit (ICU) and a high-dependency unit (HDU) where standard infection control measures were in place. Methods: In this longitudinal cohort study, we systematically sampled health-care workers, the environment, and patients over 14 months at the ICU and HDU of the Royal Sussex County Hospital, Brighton, England. Nasal swabs were taken from health-care workers every 4 weeks, bed spaces were sampled monthly, and screening swabs were obtained from patients at admission to the ICU or HDU, weekly thereafter, and at discharge. Isolates were cultured and their whole genome sequenced, and we used the threshold of 40 single-nucleotide variants (SNVs) or fewer to define subtypes and infer recent transmission. Findings: Between Oct 31, 2011, and Dec 23, 2012, we sampled 198 health-care workers, 40 environmental locations, and 1854 patients; 1819 isolates were sequenced. Median nasal carriage rate of S aureus in health-care workers at 4-weekly timepoints was 36·9% (IQR 35·7–37·3), and 115 (58%) health-care workers had S aureus detected at least once during the study. S aureus was identified in 8–50% of environmental samples. 605 genetically distinct subtypes were identified (median SNV difference 273, IQR 162–399) at a rate of 38 (IQR 34–42) per 4-weekly cycle. Only 25 instances of transmission to patients (seven from health-care workers, two from the environment, and 16 from other patients) were detected. Interpretation: In the presence of standard infection control measures, health-care workers were infrequently sources of transmission to patients. S aureus epidemiology in the ICU and HDU is characterised by continuous ingress of distinct subtypes rather than transmission of genetically related strains. Funding: UK Medical Research Council, Wellcome Trust, Biotechnology and Biological Sciences Research Council, UK National Institute for Health Research, and Public Health England

    A high-risk gut microbiota configuration associates with fatal hyperinflammatory immune and metabolic responses to SARS-CoV-2.

    Get PDF
    Protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and associated clinical sequelae requires well-coordinated metabolic and immune responses that limit viral spread and promote recovery of damaged systems. However, the role of the gut microbiota in regulating these responses has not been thoroughly investigated. In order to identify mechanisms underpinning microbiota interactions with host immune and metabolic systems that influence coronavirus disease 2019 (COVID-19) outcomes, we performed a multi-omics analysis on hospitalized COVID-19 patients and compared those with the most severe outcome (i.e. death, n = 41) to those with severe non-fatal disease (n = 89), or mild/moderate disease (n = 42), that recovered. A distinct subset of 8 cytokines (e.g. TSLP) and 140 metabolites (e.g. quinolinate) in sera identified those with a fatal outcome to infection. In addition, elevated levels of multiple pathobionts and lower levels of protective or anti-inflammatory microbes were observed in the fecal microbiome of those with the poorest clinical outcomes. Weighted gene correlation network analysis (WGCNA) identified modules that associated severity-associated cytokines with tryptophan metabolism, coagulation-linked fibrinopeptides, and bile acids with multiple pathobionts, such as Enterococcus. In contrast, less severe clinical outcomes are associated with clusters of anti-inflammatory microbes such as Bifidobacterium or Ruminococcus, short chain fatty acids (SCFAs) and IL-17A. Our study uncovered distinct mechanistic modules that link host and microbiome processes with fatal outcomes to SARS-CoV-2 infection. These features may be useful to identify at risk individuals, but also highlight a role for the microbiome in modifying hyperinflammatory responses to SARS-CoV-2 and other infectious agents

    Molecular epidemiology of methicillin-resistant Staphylococcus aureus isolated from Australian veterinarians

    Get PDF
    This work investigated the molecular epidemiology and antimicrobial resistance of methicillinresistant Staphylococcus aureus (MRSA) isolated from veterinarians in Australia in 2009. The collection (n = 44) was subjected to extensive molecular typing (MLST, spa, SCCmec, dru, PFGE, virulence and antimicrobial resistance genotyping) and antimicrobial resistance phenotyping by disk diffusion. MRSA was isolated from Australian veterinarians representing various occupational emphases. The isolate collection was dominated by MRSA strains belonging to clonal complex (CC) 8 and multilocus sequence type (ST) 22. CC8 MRSA (ST8-IV [2B], spa t064; and ST612-IV [2B] , spa variable,) were strongly associated with equine practice veterinarians (OR = 17.5, 95% CI = 3.3-92.5, P &lt; 0.001) and were often resistant to gentamicin and rifampicin. ST22-IV [2B], spa variable, were strongly associated with companion animal practice veterinarians (OR = 52.5, 95% CI = 5.2-532.7, P &lt; 0.001) and were resistant to ciprofloxacin. A single pig practice veterinarian carried ST398-V [5C2], spa t1451. Equine practice and companion animal practice veterinarians frequently carried multiresistant-CC8 and ST22 MRSA, respectively, whereas only a single swine specialist carried MRSA ST398. The presence of these strains in veterinarians may be associated with specific antimicrobial administration practices in each animal species

    The appropriateness of prescribing antibiotics in the community in Europe: study design

    Get PDF
    Contains fulltext : 97417.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND: Over 90% of all antibiotics in Europe are prescribed in primary care. It is important that antibiotics are prescribed that are likely to be effective; however, information about antibiotic resistance in the community is incomplete. The aim of our study is to investigate the appropriateness of antibiotic prescribing in primary care in Europe by collecting and combining patterns of antibiotic resistance patterns and antibiotic prescription patterns in primary care. We will also evaluate the appropriateness of national antibiotic prescription guidelines in relation to resistance patterns. METHODS/DESIGN: Antibiotic resistance will be studied in an opportunistic sample from the community in nine European countries. Resistance data will be collected by taking a nose swab of persons (N = 4,000 per country) visiting a primary care practice for a non-infectious disease. Staphylococcus aureus and Streptococcus pneumoniae will be isolated and tested for resistance to a range of antibiotics in one central laboratory. Data on antibiotic prescriptions over the past 5 years will be extracted from the electronic medical records of General Practitioners (GPs). The results of the study will include the prevalence and resistance data of the two species and 5 years of antibiotic prescription data in nine European countries.The odds of receiving an effective antibiotic in each country will be calculated as a measure for the appropriateness of prescribing. Multilevel analysis will be used to assess the appropriateness of prescribing. Relevant treatment guidelines of the nine participating countries will be evaluated using a standardized instrument and related to the resistance patterns in that country. DISCUSSION: This study will provide valuable and unique data concerning resistance patterns and prescription behaviour in primary care in nine European countries. It will provide evidence-based recommendations for antibiotic treatment guidelines that take resistance patterns into account which will be useful for both clinicians and policy makers. By improving antibiotic use we can move towards controlling the resistance problem globally

    A Timescale for Evolution, Population Expansion, and Spatial Spread of an Emerging Clone of Methicillin-Resistant Staphylococcus aureus

    Get PDF
    Due to the lack of fossil evidence, the timescales of bacterial evolution are largely unknown. The speed with which genetic change accumulates in populations of pathogenic bacteria, however, is a key parameter that is crucial for understanding the emergence of traits such as increased virulence or antibiotic resistance, together with the forces driving pathogen spread. Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of hospital-acquired infections. We have investigated an MRSA strain (ST225) that is highly prevalent in hospitals in Central Europe. By using mutation discovery at 269 genetic loci (118,804 basepairs) within an international isolate collection, we ascertained extremely low diversity among European ST225 isolates, indicating that a recent population bottleneck had preceded the expansion of this clone. In contrast, US isolates were more divergent, suggesting they represent the ancestral population. While diversity was low, however, our results demonstrate that the short-term evolutionary rate in this natural population of MRSA resulted in the accumulation of measurable DNA sequence variation within two decades, which we could exploit to reconstruct its recent demographic history and the spatiotemporal dynamics of spread. By applying Bayesian coalescent methods on DNA sequences serially sampled through time, we estimated that ST225 had diverged since approximately 1990 (1987 to 1994), and that expansion of the European clade began in 1995 (1991 to 1999), several years before the new clone was recognized. Demographic analysis based on DNA sequence variation indicated a sharp increase of bacterial population size from 2001 to 2004, which is concordant with the reported prevalence of this strain in several European countries. A detailed ancestry-based reconstruction of the spatiotemporal dispersal dynamics suggested a pattern of frequent transmission of the ST225 clone among hospitals within Central Europe. In addition, comparative genomics indicated complex bacteriophage dynamics

    Procalcitonin for diagnosis of infection and guide to antibiotic decisions: past, present and future

    Get PDF
    There are a number of limitations to using conventional diagnostic markers for patients with clinical suspicion of infection. As a consequence, unnecessary and prolonged exposure to antimicrobial agents adversely affect patient outcomes, while inappropriate antibiotic therapy increases antibiotic resistance. A growing body of evidence supports the use of procalcitonin (PCT) to improve diagnosis of bacterial infections and to guide antibiotic therapy. For patients with upper and lower respiratory tract infection, post-operative infections and for severe sepsis patients in the intensive care unit, randomized-controlled trials have shown a benefit of using PCT algorithms to guide decisions about initiation and/or discontinuation of antibiotic therapy. For some other types of infections, observational studies have shown promising first results, but further intervention studies are needed before use of PCT in clinical routine can be recommended. The aim of this review is to summarize the current evidence for PCT in different infections and clinical settings, and discuss the reliability of this marker when used with validated diagnostic algorithms

    MRSA prevalence in european healthcare settings: a review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the past two decades, methicillin-resistant <it>Staphylococcus aureus </it>(MRSA) has become increasingly common as a source of nosocomial infections. Most studies of MRSA surveillance were performed during outbreaks, so that results are not applicable to settings in which MRSA is endemic. This paper gives an overview of MRSA prevalence in hospitals and other healthcare institutions in non-outbreak situations in Western Europe.</p> <p>Methods</p> <p>A keyword search was conducted in the Medline database (2000 through June 2010). Titles and abstracts were screened to identify studies on MRSA prevalence in patients in non-outbreak situations in European healthcare facilities. Each study was assessed using seven quality criteria (outcome definition, time unit, target population, participants, observer bias, screening procedure, swabbing sites) and categorized as 'good', 'fair', or 'poor'.</p> <p>Results</p> <p>31 observational studies were included in the review. Four of the studies were of good quality. Surveillance screening of MRSA was performed in long-term care (11 studies) and acute care (20 studies). Prevalence rates varied over a wide range, from less than 1% to greater than 20%. Prevalence in the acute care and long-term care settings was comparable. The prevalence of MRSA was expressed in various ways - the percentage of MRSA among patients (range between 1% and 24%), the percentage of MRSA among <it>S. aureus </it>isolates (range between 5% and 54%), and as the prevalence density (range between 0.4 and 4 MRSA cases per 1,000 patient days). The screening policy differed with respect to time points (on admission or during hospital stay), selection criteria (all admissions or patients at high risk for MRSA) and anatomical sampling sites.</p> <p>Conclusions</p> <p>This review underlines the methodological differences between studies of MRSA surveillance. For comparisons between different healthcare settings, surveillance methods and outcome calculations should be standardized.</p
    • …
    corecore