159 research outputs found

    GaN transistors efficient cooling by graphene foam

    Get PDF
    © 2018 Elsevier Ltd Graphene conductive foams have shown very high potential as cooling material in electronic systems. Its exploitation with discrete GaN transistors is demonstrated in this paper. A proper experimental setup is developed to extract the high temperature thermal performance of this material at different test conditions. The results are very promising, showing a noticeable reduction of the device maximum temperature, especially at high dissipated power densities. Moreover, experimental results allowed the validation of a 3D finite element model of the assembled device, which can be used for thermal layout optimization. Finally, preliminary stress tests are in progress, to evaluate the stability of electrical and thermal performance of the proposed graphene based assembly. Good stability was obtained, both at low and high ambient temperatures

    Modular assembly of a single phase inverter based on integrated functional block

    Get PDF
    This paper presents an original modular plug-in type assembly approach for a single phase-inverter. The main focus here is, indicatively, on the power range 1-20 kW, but the methodology can be transferred to higher power levels, too. At the core of the inverter lies a power-dense double-sided-cooled half-bridge power switch architecture with integrated cooler, which is interconnected to filter elements, gate-driver and control circuitry by means of compact flat connectors. The integration exercise targets, on the one hand, the optimization of the power switch performance and reliability, as well as the reduction of circuit parasitic elements; on the other, the production of a system compatible with maintenance and repairing, featuring minimized impact of single component failure on the system maintenance and repair cost and thus on its availability. Preliminary experimental tests demonstrate the nominal functionality of the inverter

    Introduction (<Special Sessions>International Symposium in Shanghai : Multilateral Comparative Study of the Historical Archives : Historical Documents, and Family, Business and Society in East Asia)

    Get PDF
    This paper presents the work on an alternative integration scheme for a half-bridge switch using 70 μm thin Si IGBTs and diodes addressing higher strength, higher toughness and higher thermal conductivity. The switch is totally bond wireless, since bonded wires increase self-heating and introduce further thermomechanical degradation mechanisms. Moreover, this solution is equipped with double side liquid cooling, and plug-in edge connectors both on the driver and load sides, allowing high power density, good accessibility and modularity. Preliminary experimental results show good switching behavior

    Modeling Soft Supramolecular Nanostructures by Molecular Simulations

    Get PDF
    The design and assembly of soft supramolecular structures based on small building blocks are governed by non-covalent interactions, selective host-guest interactions, or a combination of different interaction types. There is a surprising number of studies supporting the use of computational models for mimicking supramolecular nanosystems and studying the underlying patterns of molecular recognition and binding, in multi-dimensional approaches. Based on physical properties and mathematical concepts, these models are able to provide rationales for the conformation, solvation and thermodynamic characterization of this type of systems. Molecular dynamics (MD), including free-energy calculations, yield a direct coupling between experimental and computational investigation. This chapter provides an overview of the available MD-based methods, including path-based and alchemical free-energy calculations. The theoretical background is briefly reviewed and practical instructions are introduced on the selection of methods and post-treatment procedures. Relevant examples in which non-covalent interactions dominate are presented

    Aggregation of Cyclodextrins: Fundamental Issues and Applications

    Get PDF
    The aggregation of cyclodextrins (CD) in aqueous solution is an old, yet still vastly unexplored topic that has been studied at least since the 1980s. At that time, few authors took into consideration the possibility of formation of aggregates for the interpretation of thermodynamic and thermophysical properties of CDs in aqueous solution. The aggregates appear at quite low CD concentrations and seem to encompass only a small number of CD molecules. They also occur in water in the presence of hydrophobic or amphiphilic moieties, including surfactants, assuming a preassembled state with the hydrophobic chains threading through one or two CDs. After a long period in which it has been neglected, CD aggregation is now a hot topic and one far from gathering consensus. In this chapter, a timely and critical review on the phenomenon of CD aggregation and the respective supramolecular properties, including some computational rationales, will be presented. A comprehensive summary of CD aggregates studied to date, indicating the formation conditions, characterization techniques, and applications, is also provided

    Aptamer-peptide conjugates as a new strategy to modulate human α-thrombin binding affinity

    Get PDF
    Aptamers are single-stranded RNA or DNA molecules that specifically recognize their targets and have proven valuable for functionalizing sensitive biosensors. α-thrombin is a trypsin-like serine proteinase which plays a crucial role in haemostasis and thrombosis. An abnormal activity or overexpression of this protein is associated with a variety of diseases. A great deal of attention was devoted to the construction of high-throughput biosensors for accurately detect thrombin for the early diagnosis and treatment of related diseases. Herein, we propose a new approach to modulate the interaction between α-thrombin and the aptamer TBA. To this end, TBA was chemically conjugated to two peptide sequences (TBA-GFIE-Ac and TBA-GEIF-Ac) corresponding to a short fragment of the acidic region of the human factor V, which is known to interact directly with exosite I. Surface Plasmon Resonance (SPR) results showed enhanced analytical performances of thrombin with TBA-GEIF-Ac than with TBA wild-type, reaching a limit of detection as low as 44.9 pM. Electrophoresis mobility shift assay (EMSA) corroborated the SPR results. Molecular dynamics (MD) simulations support experimental evidences and provided further insight into thrombin/TBA-peptide interaction. Our findings demonstrate that the combination of TBA with key interacting peptides offers good opportunities to produce sensitive devices for thrombin detection and potential candidates to block thrombin activity

    Mechanisms and mechanics of cell competition in epithelia

    Get PDF
    When fast-growing cells are confronted with slow-growing cells in a mosaic tissue, the slow-growing cells are often progressively eliminated by apoptosis through a process known as cell competition. The underlying signalling pathways remain unknown, but recent findings have shown that cell crowding within an epithelium leads to the eviction of cells from the epithelial sheet. This suggests that mechanical forces could contribute to cell elimination during cell competition
    corecore