444 research outputs found

    Zettawatt-Exawatt Lasers and Their Applications in Ultrastrong-Field Physics: High Energy Front

    Get PDF
    Since its birth, the laser has been extraordinarily effective in the study and applications of laser-matter interaction at the atomic and molecular level and in the nonlinear optics of the bound electron. In its early life, the laser was associated with the physics of electron volts and of the chemical bond. Over the past fifteen years, however, we have seen a surge in our ability to produce high intensities, five to six orders of magnitude higher than was possible before. At these intensities, particles, electrons and protons, acquire kinetic energy in the mega-electron-volt range through interaction with intense laser fields. This opens a new age for the laser, the age of nonlinear relativistic optics coupling even with nuclear physics. We suggest a path to reach an extremely high-intensity level 10262810^{26-28} W/cm2^2 in the coming decade, much beyond the current and near future intensity regime 102310^{23} W/cm2^2, taking advantage of the megajoule laser facilities. Such a laser at extreme high intensity could accelerate particles to frontiers of high energy, tera-electron-volt and peta-electron-volt, and would become a tool of fundamental physics encompassing particle physics, gravitational physics, nonlinear field theory, ultrahigh-pressure physics, astrophysics, and cosmology. We focus our attention on high-energy applications in particular and the possibility of merged reinforcement of high-energy physics and ultraintense laser.Comment: 25 pages. 1 figur

    Prognostic Significance of Growth Kinetics in Newly Diagnosed Glioblastomas Revealed by Combining Serial Imaging with a Novel Biomathematical Model

    Get PDF
    Glioblastomas (GBMs) are the most aggressive primary brain tumors characterized by their rapid proliferation and diffuse infiltration of the brain tissue. Survival patterns in patients with GBM have been associated with a number of clinico-pathologic factors, including age and neurological status, yet a significant quantitative link to in vivo growth kinetics of each glioma has remained elusive. Exploiting a recently developed tool for quantifying glioma net proliferation and invasion rates in individual patients using routinely available magnetic resonance images (MRIs), we propose to link these patient-specific kinetic rates of biological aggressiveness to prognostic significance. Using our biologically-based mathematical model for glioma growth and invasion, examination of serial pre-treatment MRIs of 32 GBM patients allowed quantification of these rates for each patient’s tumor. Survival analyses revealed that even when controlling for standard clinical parameters (e.g., age, KPS) these model-defined parameters quantifying biologically aggressiveness (net proliferation and invasion rates) were significantly associated with prognosis. One hypothesis generated was that the ratio of the actual survival time after whatever therapies were employed to the duration of survival predicted (by the model) without any therapy would provide a “Therapeutic Response Index” (TRI) of the overall effectiveness of the therapies. The TRI may provided important information, not otherwise available, as to the effectiveness of the treatments in individual patients. To our knowledge, this is the first report indicating that dynamic insight from routinely obtained pre-treatment imaging may be quantitatively useful in characterizing survival of individual patients with GBM. Such a hybrid tool bridging mathematical modeling and clinical imaging may allow for statifying patients for clinical studies relative to their pretreatment biological aggressiveness

    Entrepreneurial Orientation and the Family Firm: Mapping the Field and Tracing a Path for Future Research

    Get PDF
    ABSTRACT: Despite several calls for the further study of entrepreneurial orientation in family firms, we still have a fragmented understanding of this topic, whose full potential has yet to be reached. To shed new light on this issue, this article first maps the family business field by carrying out a systematic review and content analysis of the 78 articles identified at the confluence of entrepreneurial orientation and family firms. Our study describes and critically assesses previous research as well as the conclusions reached. Second, this article identifies the main research gaps and provides a path for future investigations

    Prediction and Topological Models in Neuroscience

    Get PDF
    In the last two decades, philosophy of neuroscience has predominantly focused on explanation. Indeed, it has been argued that mechanistic models are the standards of explanatory success in neuroscience over, among other things, topological models. However, explanatory power is only one virtue of a scientific model. Another is its predictive power. Unfortunately, the notion of prediction has received comparatively little attention in the philosophy of neuroscience, in part because predictions seem disconnected from interventions. In contrast, we argue that topological predictions can and do guide interventions in science, both inside and outside of neuroscience. Topological models allow researchers to predict many phenomena, including diseases, treatment outcomes, aging, and cognition, among others. Moreover, we argue that these predictions also offer strategies for useful interventions. Topology-based predictions play this role regardless of whether they do or can receive a mechanistic interpretation. We conclude by making a case for philosophers to focus on prediction in neuroscience in addition to explanation alone

    Case-control study on uveal melanoma (RIFA): rational and design

    Get PDF
    BACKGROUND: Although a rare disease, uveal melanoma is the most common primary intraocular malignancy in adults, with an incidence rate of up to 1.0 per 100,000 persons per year in Europe. Only a few consistent risk factors have been identified for this disease. We present the study design of an ongoing incident case-control study on uveal melanoma (acronym: RIFA study) that focuses on radiofrequency radiation as transmitted by radio sets and wireless telephones, occupational risk factors, phenotypical characteristics, and UV radiation. METHODS/DESIGN: We conduct a case-control study to identify the role of different exposures in the development of uveal melanoma. The cases of uveal melanoma were identified at the Division of Ophthalmology, University of Essen, a referral centre for tumours of the eye. We recruit three control groups: population controls, controls sampled from those ophthalmologists who referred cases to the Division of Ophthalmology, University of Duisburg-Essen, and sibling controls. For each case the controls are matched on sex and age (five year groups), except for sibling controls. The data are collected from the study participants by short self-administered questionnaire and by telephone interview. During and at the end of the field phase, the data are quality-checked. To estimate the effect of exposures on uveal melanoma risk, we will use conditional logistic regression that accounts for the matching factors and allows to control for potential confounding

    Primary results from the CLEAR study of a novel stent retriever with drop zone technology

    Get PDF
    Background: Challenges to revascularization of large vessel occlusions (LVOs) persist. Current stent retrievers have limited effectiveness for removing organized thrombi. The NeVa device is a novel stent retriever designed to capture organized thrombi within the scaffold during retrieval. Objective: To evaluate the safety and effectiveness of revascularization of acute LVOs with the NeVa device. Methods: Prospective, international, multicenter, single-arm, Investigational Device Exemption study to evaluate the performance of the NeVa device in recanalizing LVOs including internal carotid artery, M1/M2 middle cerebral artery, and vertebrobasilar arteries, within 8 hours of onset. Primary endpoint was rate of expanded Treatment in Cerebral Ischemia (eTICI) score 2b-3 within 3 NeVa passes, tested for non-inferiority against a performance goal of 72% with a -10% margin. Additional endpoints included first pass success and 90-day modified Rankin Scale (mRS) score 0-2. Primary composite safety endpoint was 90-day mortality and/or 24-hour symptomatic intracranial hemorrhage (sICH). Results: From April 2021 to April 2022, 139 subjects were enrolled at 25 centers. Median National Institutes of Health Stroke Scale (NIHSS) score was 16 (IQR 12-20). In the primary analysis population (n=107), eTICI 2b-3 within 3 NeVa passes occurred in 90.7% (97/107; non-inferiority P<0.0001; post hoc superiority P<0.0001). First pass eTICI 2b-3 was observed in 73.8% (79/107), with first pass eTICI 2b67-3 in 69.2% (74/107) and eTICI 2c-3 in 48.6% (52/107). Median number of passes was 1 (IQR 1-2). Final eTICI 2b-3 rate was 99.1% (106/107); final eTICI 2b67-3 rate was 91.6% (98/107); final eTICI 2c-3 rate was 72.9% (78/107). Good outcome (90-day mRS score 0-2) was seen in 65.1% (69/106). Mortality was 9.4% (13/138) with sICH in 5.0% (7/139). Conclusions: The NeVa device is highly effective and safe for revascularization of LVO strokes and demonstrates superior first pass success compared with a predicate performance goal. Trial registration number: NCT04514562

    Moving Just Like You: Motor Interference Depends on Similar Motility of Agent and Observer

    Get PDF
    Recent findings in neuroscience suggest an overlap between brain regions involved in the execution of movement and perception of another’s movement. This so-called “action-perception coupling” is supposed to serve our ability to automatically infer the goals and intentions of others by internal simulation of their actions. A consequence of this coupling is motor interference (MI), the effect of movement observation on the trajectory of one’s own movement. Previous studies emphasized that various features of the observed agent determine the degree of MI, but could not clarify how human-like an agent has to be for its movements to elicit MI and, more importantly, what ‘human-like’ means in the context of MI. Thus, we investigated in several experiments how different aspects of appearance and motility of the observed agent influence motor interference (MI). Participants performed arm movements in horizontal and vertical directions while observing videos of a human, a humanoid robot, or an industrial robot arm with either artificial (industrial) or human-like joint configurations. Our results show that, given a human-like joint configuration, MI was elicited by observing arm movements of both humanoid and industrial robots. However, if the joint configuration of the robot did not resemble that of the human arm, MI could longer be demonstrated. Our findings present evidence for the importance of human-like joint configuration rather than other human-like features for perception-action coupling when observing inanimate agents

    Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica

    Get PDF
    The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice–climate feedbacks that further amplify warming

    New Aspects of the Temperature-Magnetic Field Phase Diagram of CeB6

    Get PDF
    We have measured the magnetic field dependence of the paramagnetic to the field-induced high temperature antiferroquadrupolar magnetically ordered phase transition is CeB6 from 0 to 60 T using a variety of techniques. It is found that the field-dependent phase separation line becomes re-entrant above 35 T and below 10 K. Measurements of resonant ultra-sound, specific heat and neutron diffraction show conclusively that the zero-field temperature-dependent phase transition is to a state with no ordered dipole moments, but with second order transition signatures in both sound attenuation and specific heat.Comment: 4 pages, 4 figures, 11 references, submitted to Physical Review Letter
    corecore