810 research outputs found
From Network Structure to Dynamics and Back Again: Relating dynamical stability and connection topology in biological complex systems
The recent discovery of universal principles underlying many complex networks
occurring across a wide range of length scales in the biological world has
spurred physicists in trying to understand such features using techniques from
statistical physics and non-linear dynamics. In this paper, we look at a few
examples of biological networks to see how similar questions can come up in
very different contexts. We review some of our recent work that looks at how
network structure (e.g., its connection topology) can dictate the nature of its
dynamics, and conversely, how dynamical considerations constrain the network
structure. We also see how networks occurring in nature can evolve to modular
configurations as a result of simultaneously trying to satisfy multiple
structural and dynamical constraints. The resulting optimal networks possess
hubs and have heterogeneous degree distribution similar to those seen in
biological systems.Comment: 15 pages, 6 figures, to appear in Proceedings of "Dynamics On and Of
Complex Networks", ECSS'07 Satellite Workshop, Dresden, Oct 1-5, 200
A Pinhole Camera for Radiation Research in Dentistry
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68035/2/10.1177_00220345620410013201.pd
Health Assessment and Seroepidemiologic Survey of Potential Pathogens in Wild Antillean Manatees (Trichechus manatus manatus)
The Antillean manatee (Trichechus manatus manatus), a subspecies of the West Indian manatee, inhabits fresh, brackish, and warm coastal waters distributed along the eastern border of Central America, the northern coast of South America, and throughout the Wider Caribbean Region. Threatened primarily by human encroachment, poaching, and habitat degradation, Antillean manatees are listed as endangered by the International Union for the Conservation of Nature. The impact of disease on population viability remains unknown in spite of concerns surrounding the species' ability to rebound from a population crash should an epizootic occur. To gain insight on the baseline health of this subspecies, a total of 191 blood samples were collected opportunistically from wild Antillean manatees in Belize between 1997 and 2009. Hematologic and biochemical reference intervals were established, and antibody prevalence to eight pathogens with zoonotic potential was determined. Age was found to be a significant factor of variation in mean blood values, whereas sex, capture site, and season contributed less to overall differences in parameter values. Negative antibody titers were reported for all pathogens surveyed except for Leptospira bratislava, L. canicola, and L. icterohemorrhagiae, Toxoplasma gondii, and morbillivirus. As part of comprehensive health assessment in manatees from Belize, this study will serve as a benchmark aiding in early disease detection and in the discernment of important epidemiologic patterns in the manatees of this region. Additionally, it will provide some of the initial tools to explore the broader application of manatees as sentinel species of nearshore ecosystem health
Implementation of the Random Forest Method for the Imaging Atmospheric Cherenkov Telescope MAGIC
The paper describes an application of the tree classification method Random
Forest (RF), as used in the analysis of data from the ground-based gamma
telescope MAGIC. In such telescopes, cosmic gamma-rays are observed and have to
be discriminated against a dominating background of hadronic cosmic-ray
particles. We describe the application of RF for this gamma/hadron separation.
The RF method often shows superior performance in comparison with traditional
semi-empirical techniques. Critical issues of the method and its implementation
are discussed. An application of the RF method for estimation of a continuous
parameter from related variables, rather than discrete classes, is also
discussed.Comment: 16 pages, 8 figure
Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope
We analyze the timing of photons observed by the MAGIC telescope during a
flare of the active galactic nucleus Mkn 501 for a possible correlation with
energy, as suggested by some models of quantum gravity (QG), which predict a
vacuum refractive index \simeq 1 + (E/M_{QGn})^n, n = 1,2. Parametrizing the
delay between gamma-rays of different energies as \Delta t =\pm\tau_l E or
\Delta t =\pm\tau_q E^2, we find \tau_l=(0.030\pm0.012) s/GeV at the 2.5-sigma
level, and \tau_q=(3.71\pm2.57)x10^{-6} s/GeV^2, respectively. We use these
results to establish lower limits M_{QG1} > 0.21x10^{18} GeV and M_{QG2} >
0.26x10^{11} GeV at the 95% C.L. Monte Carlo studies confirm the MAGIC
sensitivity to propagation effects at these levels. Thermal plasma effects in
the source are negligible, but we cannot exclude the importance of some other
source effect.Comment: 12 pages, 3 figures, Phys. Lett. B, reflects published versio
Unfolding of differential energy spectra in the MAGIC experiment
The paper describes the different methods, used in the MAGIC experiment, to
unfold experimental energy distributions of cosmic ray particles (gamma-rays).
Questions and problems related to the unfolding are discussed. Various
procedures are proposed which can help to make the unfolding robust and
reliable. The different methods and procedures are implemented in the MAGIC
software and are used in most of the analyses.Comment: Submitted to NIM
A stochastic evolutionary model generating a mixture of exponential distributions
Recent interest in human dynamics has stimulated the investigation of the stochastic processes that explain human behaviour in various contexts, such as mobile phone networks and social media.
In this paper, we extend the stochastic urn-based model proposed in \cite{FENN15} so that it can generate mixture models,
in particular, a mixture of exponential distributions.
The model is designed to capture the dynamics of survival analysis, traditionally employed in clinical trials, reliability analysis in engineering, and more recently in the analysis of large data sets recording human dynamics. The mixture modelling approach, which is relatively simple and well understood, is very effective in capturing heterogeneity in data.
We provide empirical evidence for the validity of the model, using a data set of popular search engine queries collected over a period of 114 months. We show that the survival function of these queries is closely matched by the exponential mixture solution for our model
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
- …