35,990 research outputs found

    The inhomogeneous evolution of subgraphs and cycles in complex networks

    Full text link
    Subgraphs and cycles are often used to characterize the local properties of complex networks. Here we show that the subgraph structure of real networks is highly time dependent: as the network grows, the density of some subgraphs remains unchanged, while the density of others increase at a rate that is determined by the network's degree distribution and clustering properties. This inhomogeneous evolution process, supported by direct measurements on several real networks, leads to systematic shifts in the overall subgraph spectrum and to an inevitable overrepresentation of some subgraphs and cycles.Comment: 4 pages, 4 figures, submitted to Phys. Rev.

    Stratification requirements for seed dormancy alleviation in a wetland weed.

    Get PDF
    Echinochloaoryzicola(syn.E. phyllopogon) is an exotic weed of California rice paddies that has evolved resistance to multiple herbicides. Elimination of seedlingsthroughcertain weed control methods can limit the spread of this weed, but is contingent on accurate predictions of germination and emergence timing, which are influenced by seed dormancy levels.In summer annuals, dormancy can often be relieved through stratification, a period of prolonged exposure to cold and moist conditions.We used population-based threshold models to quantify the effects of stratification on seed germination of four E. Oryzicola populations at a range of water potential (ι) and oxygen levels. We also determined how stratification temperatures, moisture levels and durations contributed to dormancy release. Stratification released dormancy by decreasing base ι and hydrotimerequired for germination and by eliminating any germination sensitivity to oxygen. Stratification also increased average germination rates (GR), which were used as a proxy for relative dormancy levels. Alternating temperatures nearly doubled GR in all populations, indicating that seeds could be partially dormant despite achieving high final germination percentages. Stratification at ι = 0 MPa increased GR compared to stratification at lower water potentials, demonstrating that ι contributed to regulating dormancy release. Maximum GR occurred after 2-4 weeks of stratification at 0 MPa; GR were often more rapid for herbicide-resistant than for herbicide-susceptible seeds, implying greater dormancy in the latter. Manipulation of field conditions to promote dormancy alleviation of E. oryzicola seeds might improve the rate and uniformity of germination for seed bank depletion through seedling weed control. Our results suggest field soil saturation in winter would contribute towards E. oryzicola dormancy release and decrease the time to seedling emergence

    Limit order books and trade informativeness

    Get PDF
    In the microstructure literature, information asymmetry is an important determinant of market liquidity. The classic setting is that uninformed dedicated liquidity suppliers charge price concessions when incoming market orders are likely to be informationally motivated. In limit order book markets, however, this relationship is less clear, as market participants can switch roles, and freely choose to immediately demand or patiently supply liquidity by submitting either market or limit orders. We study the importance of information asymmetry in limit order books based on a recent sample of thirty German DAX stocks. We find that Hasbrouck’s (1991) measure of trade informativeness Granger-causes book liquidity, in particular that required to fill large market orders. Picking-off risk due to public news induced volatility is more important for top-of-the book liquidity supply. In our multivariate analysis we control for volatility, trading volume, trading intensity and order imbalance to isolate the effect of trade informativeness on book liquidity. JEL Classification: G14 Keywords: Price Impact of Trades , Trading Intensity , Dynamic Duration Models, Spread Decomposition Models , Adverse Selection Ris

    COLD-SAT: An orbital cryogenic hydrogen technology experiment

    Get PDF
    The COLD-SAT spacecraft will perform subcritical liquid hydrogen storage and transfer experiments under low-gravity conditions to provide engineering data for future space transportation missions. Consisting of an experiment module mated to a spacecraft bus, COLD-SAT will be placed in an initial 460 km circular orbit by an Atlas I commercial launch vehicle. After deployment, the three-axis-controlled spacecraft bus will provide electric power, experiment control and data management, communications, and attitude control along with propulsive acceleration levels ranging from 10(-6) to 10(-4)g. These accelerations are an important aspect of some of the experiments, as it is desired to know the effects that low gravity levels might have on the heat and mass transfer processes involved. The experiment module will contain the three liquid hydrogen tanks, valves, pressurization equipment, and instrumentation. At launch all the hydrogen will be in the largest tank, which has helium-purged MLI and is loaded and topped off by the hydrogen tanking system used for the Centaur upper stage of the Atlas. The two smaller tanks will be utilized in orbit for performing some of the experiments. The experiments are grouped into two classes on the basis of their priority, and include six regarded as enabling technology and nine regarded as enhancing technology

    Predicting the hypervelocity star population in Gaia

    Full text link
    Hypervelocity stars (HVSs) are amongst the fastest objects in our Milky Way. These stars are predicted to come from the Galactic center (GC) and travel along unbound orbits across the Galaxy. In the coming years, the ESA satellite Gaia will provide the most complete and accurate catalogue of the Milky Way, with full astrometric parameters for more than 11 billion stars. In this paper, we present the expected sample size and properties (mass, magnitude, spatial, velocity distributions) of HVSs in the Gaia stellar catalogue. We build three Gaia mock catalogues of HVSs anchored to current observations, exploring different ejection mechanisms and GC stellar population properties. In all cases, we predict hundreds to thousands of HVSs with precise proper motion measurements within a few tens of kpc from us. For stars with a relative error in total proper motion below 10%10 \%, the mass range extends to ~10M⊙10 M_{\odot} but peaks at ~11 M⊙M_\odot. The majority of Gaia HVSs will therefore probe a different mass and distance range compared to the current non-Gaia sample. In addition, a subset of a few hundreds to a few thousands of HVSs with MM ~ 33 M⊙M_\odot will be bright enough to have a precise measurement of the three-dimensional velocity from Gaia alone. Finally, we show that Gaia will provide more precise proper motion measurements for the current sample of HVS candidates. This will help identifying their birthplace narrowing down their ejection location, and confirming or rejecting their nature as HVSs. Overall, our forecasts are extremely encouraging in terms of quantity and quality of HVS data that can be exploited to constrain both the Milky Way potential and the GC properties.Comment: 17 pages, 18 figures, accepted for publication in MNRA

    XMM-Newton observations of the spiral galaxy M74 (NGC 628)

    Get PDF
    The face-on spiral galaxy M74 (NGC 628) was observed by XMM on 2002 February 2. In total, 21 sources are found in the inner 5' from the nucleus (after rejection of a few sources associated to foreground stars). Hardness ratios suggest that about half of them belong to the galaxy. The higher-luminosity end of the luminosity function is fitted by a power-law of slope -0.8. This can be interpreted as evidence of ongoing star formation, in analogy with the distributions found in disks of other late-type galaxies. A comparison with previous Chandra observations reveals a new ultraluminous X-ray transient (L_x \~ 1.5 x 10^39 erg/s in the 0.3--8 keV band) about 4' North of the nucleus. We find another transient black-hole candidate (L_x ~ 5 x 10^38 erg/s) about 5' North-West of the nucleus. The UV and X-ray counterparts of SN 2002ap are also found in this XMM observation.Comment: submitted to ApJL. Based on publicly available data, see http://xmm.vilspa.esa.es/external/xmm_news/items/sn_2002_ap/index.shtm

    Batalin-Vilkovisky Integrals in Finite Dimensions

    Full text link
    The Batalin-Vilkovisky method (BV) is the most powerful method to analyze functional integrals with (infinite-dimensional) gauge symmetries presently known. It has been invented to fix gauges associated with symmetries that do not close off-shell. Homological Perturbation Theory is introduced and used to develop the integration theory behind BV and to describe the BV quantization of a Lagrangian system with symmetries. Localization (illustrated in terms of Duistermaat-Heckman localization) as well as anomalous symmetries are discussed in the framework of BV.Comment: 35 page

    Mass Density Profiles of LSB Galaxies

    Get PDF
    We derive the mass density profiles of dark matter halos that are implied by high spatial resolution rotation curves of low surface brightness galaxies. We find that at small radii, the mass density distribution is dominated by a nearly constant density core with a core radius of a few kpc. For rho(r) ~ r^a, the distribution of inner slopes a is strongly peaked around a = -0.2. This is significantly shallower than the cuspy a < -1 halos found in CDM simulations. While the observed distribution of alpha does have a tail towards such extreme values, the derived value of alpha is found to depend on the spatial resolution of the rotation curves: a ~ -1 is found only for the least well resolved galaxies. Even for these galaxies, our data are also consistent with constant density cores (a = 0) of modest (~ 1 kpc) core radius, which can give the illusion of steep cusps when insufficiently resolved. Consequently, there is no clear evidence for a cuspy halo in any of the low surface brightness galaxies observed.Comment: To be published in ApJ Letters. 6 pages. Uses aastex and emulateapj5.sty Typo in Eq 1 fixe

    Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions

    Full text link
    Accurate models of alkali and halide ions in aqueous solution are necessary for computer simulations of a broad variety of systems. Previous efforts to develop ion force fields have generally focused on reproducing experimental measurements of aqueous solution properties such as hydration free energies and ion-water distribution functions. This dependency limits transferability of the resulting parameters because of the variety and known limitations of water models. We present a solvent-independent approach to calibrating ion parameters based exclusively on crystal lattice properties. Our procedure relies on minimization of lattice sums to calculate lattice energies and interionic distances instead of equilibrium ensemble simulations of dense fluids. The gain in computational efficiency enables simultaneous optimization of all parameters for Li+, Na+, K+, Rb+, Cs+, F-, Cl-, Br-, and I- subject to constraints that enforce consistency with periodic table trends. We demonstrate the method by presenting lattice-derived parameters for the primitive model and the Lennard-Jones model with Lorentz-Berthelot mixing rules. The resulting parameters successfully reproduce the lattice properties used to derive them and are free from the influence of any water model. To assess the transferability of the Lennard-Jones parameters to aqueous systems, we used them to estimate hydration free energies and found that the results were in quantitative agreement with experimentally measured values. These lattice-derived parameters are applicable in simulations where coupling of ion parameters to a particular solvent model is undesirable. The simplicity and low computational demands of the calibration procedure make it suitable for parametrization of crystallizable ions in a variety of force fields.Comment: 9 pages, 5 table

    Two Dimensional Velocity Fields of Low Surface Brightness Galaxies

    Get PDF
    We present high resolution two dimensional velocity fields from integral field spectroscopy along with derived rotation curves for nine low surface brightness galaxies. This is a positive step forward in terms of both data quality and number of objects studied. We fit NFW and pseudo-isothermal halo models to the observations. We find that the pseudo-isothermal halo better represents the data in most cases than the NFW halo, as the resulting concentrations are lower than would be expected for LCDM.Comment: 2 pages, 1 figure, to appear in the XXIst IAP Colloquium "Mass Profiles and Shapes of Cosmological Structures", Paris 4-9 July 2005, (Eds.) G. Mamon, F. Combes, C. Deffayet, B. Fort, (EDP Sciences
    • 

    corecore