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Abstract: 
In the microstructure literature, information asymmetry is an important determinant of market 
liquidity. The classic setting is that uninformed dedicated liquidity suppliers charge price 
concessions when incoming market orders are likely to be informationally motivated. In limit 
order book markets, however, this relationship is less clear, as market participants can switch 
roles, and freely choose to immediately demand or patiently supply liquidity by submitting 
either market or limit orders. We study the importance of information asymmetry in limit 
order books based on a recent sample of thirty German DAX stocks. We find that 
Hasbrouck’s (1991) measure of trade informativeness Granger-causes book liquidity, in 
particular that required to fill large market orders. Picking-off risk due to public news induced 
volatility is more important for top-of-the book liquidity supply. In our multivariate analysis 
we control for volatility, trading volume, trading intensity and order imbalance to isolate the 
effect of trade informativeness on book liquidity. 
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1 Introduction

The classic microstructure literature distinguishes liquidity suppliers and liquidity deman-

ders, which naturally introduces information asymmetry. That is, liquidity suppliers trade

against potentially privately-informed liquidity demanders and charge them an increased

price concession to protect themselves.1 This deters uninformed, hedging-motivated liq-

uidity demand and, in the extreme, might cause the market to break down. Information

asymmetry thus reduces welfare (cf. Biais et al. 2005, p.223-227). Easley et al. (2002) pro-

vide evidence that asymmetric information risk is priced, as stocks for which they estimate

a high probability of informed trading have to offer higher expected returns.

With the advent of electronic limit order book (LOB) markets, however, the dis-

tinction between uninformed liquidity suppliers and potentially informed liquidity demanders

became blurred. Investors arriving at the market can choose to demand liquidity through

a market order, but they can also enter their trading interest in the book via a limit order.

In the latter case they effectively supply liquidity. It is therefore unclear to what extent the

increased price concession due to information asymmetry, one of the cornerstones of classic

microstructure, still matters for liquidity supply in electronic LOB markets.

We exploit a comprehensive sample of thirty index stocks traded in the limit order

book of the German Stock Exchange to empirically assess the effect of information asymme-

try on the supply of liquidity. The main advantage is that the data come from a pure limit

order book market which, for these stocks, captures over 95% of the non-OTC order flow.

In a time series approach we relate Hasbrouck’s (1991) informativeness measure to

limit order book liquidity. We find that trade informativeness Granger-causes price con-

cessions for large market orders, but has little impact for average-size market orders. For

top-of-the book liquidity supply, picking-off risk due to public news induced volatility is

more important. In a multivariate analysis of the impact of trade informativeness on book

liquidity we allow for control variables such as realised volatility, trading intensity, and trade

size.

The main motivation for our study is to provide empirical evidence to feed the

rapidly expanding theoretical literature on limit order markets. Recent LOB theory can

broadly be classified into static and dynamic models. Static models strictly distinguish be-

tween liquidity suppliers and liquidity demanders. Only the latter have access to private

information about the fundamental asset price. The limit order book is the optimal market

structure in this framework, as it fosters competition among suppliers of liquidity. In par-
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ticular, Glosten (1994) shows that risk-neutral limit order submitters compete for supply so

that, in equilibrium, the marginal order breaks even in terms of expected profit. Limit order

traders incur adverse-selection costs as they trade against a (potentially) informed market

order. Biais et al. (2000) consider an extension with a limited number of strategic suppliers.

They show that the Glosten result obtains if their number goes to infinity. Seppi (1997)

and Parlour and Seppi (2003) compare the LOB market with a hybrid market, where the

limit order book competes with a strategic specialist who has the privilege of ex-post price

improvement. Biais et al. (1998) show how the LOB market is more likely to implement the

competitive equilibrium of strategic suppliers when compared to a dealer or a floor market.

The class of dynamic LOB models does not distinguish ex-ante between liquidity

suppliers and demanders, but let agents arrive randomly in the market to decide whether

to submit a limit order (act as liquidity supplier) or to submit a market order (act as

liquidity demander), or do nothing. These agents trade-off the cost of immediacy (to pay

the spread) associated with a market order against the costs of a limit order submission,

i.e. possibly infinitely delayed execution and picking-off risk. Picking-off risk occurs when

limit orders are not monitored continuously, so that public information arrivals mechanically

make limit buys execute more often when the value drops and make limit sells execute more

often when the value rises. The agents in these dynamic models trade to lock in some

private value orthogonal to common value innovations. Information is symmetric and there

is no adverse-selection risk (cf. Parlour 1998, Foucault 1999, Goettler et al. 2005, Hollifield

et al. 2006, Hollifield et al. 2004, Foucault et al. 2005, Rosu 2009). To the best of our

knowledge, Goettler et al. (2009) is the single exception as they propose a dynamic LOB

model with adverse-selection risk.

One reason why dynamic LOB models abstract from adverse-selection risk is math-

ematical tractability, but Foucault et al. (2005) and Rosu (2009) also justify the assumption

with Huang and Stoll’s (1997) finding that the majority of the bid-ask spread (88.8%) is

due to non-informational frictions. We note that while dynamic LOB models do consider

picking-off risk, this risk is fundamentally different from adverse-selection risk, as the latter

involves a (potential) transfer of surplus from uninformed to informed traders and, therefore,

potentially impedes trade. We henceforth interpret picking-off risk in the narrow sense of

“adverse” execution due to public information, consistent with dynamic LOB models. In

real-world markets, such adverse execution might also be due to private information in the

order flow. In our multivariate analysis, both aspects of adverse execution are accounted

for by including a proxy for public news induced volatility (realised volatility) as a control

variable along with Hasbrouck’s (1991) measure of trade informativeness.
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In addition to the time series analysis of trade informativeness and liquidity supply,

we also pursue a structural approach in order to test the Glosten (1994) model. For this test,

we have a limit order book in mind that quickly replenishes to equilibrium after each market

order. We follow Sand̊as (2001) who tests the Glosten model using three months of data

(starting Dec 1991) for ten stocks traded on the Stockholm Stock Exchange (SSE). Formal

tests performed by Sand̊as (2001) reject the model, but one could argue that the SSE market

design is too different from the theoretical setting of the Glosten model in the first place.

We believe our data are more appropriate because of three main reasons. First, the German

electronic market covers over 95% of non-OTC trades, whereas the Swedish sample missed “a

significant fraction of the turnover” due to transactions on London’s SEAQ International and

NASDAQ (see Sand̊as (2001, p.708)). Second, entry as an implicit market maker through

limit order activity is more attractive. The reason is that the German exchange, as opposed

to the 1991 Stockholm exchange, does not charge for limit order submission or cancellation.

Third, our more recent sample benefits from technological development since 1991. Early

evidence of a quickly replenishing book is the high limit order activity that we measure in

our data. We find that the ratio of limit to market orders is 6.1, which compares to a 1.7

ratio for Sand̊as’ SSE sample.

Empirical evidence consistent with a replenishing “Glosten”-book is that on poor

book liquidity limit orders are more likely than market orders (cf. Biais et al. 1995, Griffiths

et al. 2000, Ahn et al. 2001, Ranaldo 2004). This evidence, however, is also consistent

with dynamic limit order book models. There is, however, also some evidence in favour

of a replenishing Glosten-book after privately informed market orders, which is harder to

reconcile with current dynamic models that assume symmetric information. As for private

information in market orders, Biais et al. (1995) study the Paris LOB market and find

that, along with the ask, the bid changes after a market buy, which indicates that market

orders are informative. Bloomfield et al. (2009) conduct an LOB market experiment and

one of their findings is that informed traders use market orders relatively more often than

noise traders or liquidity traders. As for a quickly replenishing book, Biais et al. (1995,

p.1693) document that durations are 30% shorter after a large market order and interpret

this finding as “traders quickly place orders within the best quotes to supply liquidity at

relatively advantageous prices and to obtain time priority (p.1683)”. Ranaldo (2004) reports

a similar finding for the Swiss Stock Exchange. Finally, LOB markets are easily accessible,

transparent electronic markets, and any profit opportunities in the book should therefore be

quickly filled by outside liquidity providers.

There is also evidence against a quickly replenishing Glosten-LOB. For the hybrid
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NYSE market, Harris and Hasbrouck (1996, p.230) find that “expected profits accruing to

an off-the-floor trader who attempts to behave as a dealer are generally negative. . . ”. In

hybrid markets, though, limit orders are at a disadvantage relative to the specialist who can

cream-skim arriving market orders, as she can decide ex-post (i.e. after arrival) whether or

not to supply liquidity (cf. Seppi 1997, Parlour and Seppi 2003).

Our main results can be summarised as follows. Consistent with Sand̊as’s (2001)

results, our formal tests also reject the structural model. The informativeness parameter,

Glosten’s α, turns insignificant when based on the updating conditions for an equilibrium

LOB. One interpretation is that book replenishment from transaction to transaction is noisy

and potentially incomplete. This motivates our alternative approach that does not rely

on a parametrised model, and uses the long-term price impact of trades to measure their

informativeness. This approach finds empirical support for the main prediction of static

LOB models that informativeness matters for book liquidity, which we measure through price

concessions of market orders of different sizes. We find that large order price concessions are

most sensitive to trade informativeness, as opposed to any of the control variables employed

in the multivariate analysis, e.g. realised volatility. However, we also find that the bid-ask

spread and the average-size order price concessions respond stronger to our proxy of market

volatility, i.e. picking-off risk that is unrelated to private information.

These findings relate to two recent papers on the Island ECN, which has the addi-

tional feature of competition for order flow with other non-OTC venues, most notably the

NASDAQ. Consistent with our findings, Hasbrouck and Saar (2007) document for a cross-

section of securities that volatility is associated with lower depth in the book. We contribute

by emphasising trade informativeness, where we control for volatility. And, Hasbrouck and

Saar (2009) find that limit orders should not be viewed solely as “patient” liquidity supply,

as some “fleeting” limit orders appear to hunt for hidden depth.

The remainder of the paper is organised as follows. Section 2 discusses the institu-

tional background, the available data, and presents summary statistics. Section 3 reviews the

Glosten (1994) model and estimates the structural parameters by GMM following Sand̊as

(2001). Section 4 studies time-varying trade informativeness using the Hasbrouck (1991)

measure and conducts Granger causality tests to study whether high informativeness causes

poor book liquidity and vice versa. In a multivariate analysis we add control variables such

as volatility, trade size, and duration to isolate the trade informativeness effect. Section 5

discusses the results and Section 6 concludes.
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2 Institutional Background and Data Sample

2.1 The XETRA Limit Order Book

The German Stock Exchange (GSE) operates the electronic limit order book XETRA accord-

ing to trading rules that are similar to previously studied limit order markets e.g. Euronext,

the Hong Kong Stock Exchange and the Swedish Stock Exchange. We refer to Biais et al.

(1995) for a detailed description of these rules. Trading starts at 9 a.m. (Central European

Time CET) with an opening auction and closes at 5.30 p.m. with a closing auction. Around

noon, trading is interrupted for the “mid-day” auction. For the DAX30 constituent stocks

studied in this paper there are no designated market makers. Market orders larger than the

depth available at the best quote automatically “walk up the book.”

XETRA is quite close to the stylised setting analysed in Glosten’s (1994) limit order

book model, but deviates in two ways. First, it allows for so-called iceberg orders, which

are similar to standard limit orders with the exception that part of the limit order volume is

not displayed in the book. This hidden volume enjoys price priority over other limit orders,

but not time priority. In the remainder of the paper, we focus on the results based on the

visible book. For the sake of a robustness check, we also perform the analysis on the total

book and find that the results are not affected. The second main difference to the Glosten

framework is that the XETRA limit order book faces some local, regional, and international

competition for order flow. Parallel to the XETRA system, the German Stock Exchange

maintains a trading floor which, by all means, functions as an upstairs market. Regional

competition comes from smaller German exchanges. Finally, eleven of the thirty DAX stocks

are cross-listed as ADR at the NYSE. However, we can safely ignore these alternative trading

venues in the analysis as the XETRA system has a market share of at least 95%. Our stocks

also trade in an OTC market, but it is hard to measure the size of this market as trades do

not need to be reported.

2.2 Data and Summary Statistics

From the GSE, we have received data on all XETRA order book events—entries, cancella-

tions, revisions, expirations, partial-fills and full-fills of market, limit, and iceberg orders—for

a three month period: January 2nd through March 31st, 2004. In this study, we focus on the

thirty blue chip stocks in the German DAX index. We use the data to perform a real-time
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reconstruction of the order book sequences. For that purpose, we start with an initial state

of the book each day and use all order events to re-build the book sequences for the remain-

der of the day, accounting for every event that changes the order book. Our reconstruction

procedure permits distinguishing the visible and the hidden part of the order book.

[insert Table 1 here]

Summary statistics in Table 1 show that XETRA trading is very active, in particular

in terms of limit order submissions. For the average stock in the sample, the average daily

number of limit orders submitted to the system is 12,785, i.e. 25 limit orders per minute.

Of these submissions, 10,887 are cancelled prior to execution on the same day. The average

number of trades per day is 2,099, i.e. 4 trades per minute. These numbers suggest that limit

order traders actively follow the market and submit orders to benefit from profit opportuni-

ties in the spirit of the Glosten-model. It is interesting to note that relatively many orders

arrive as limit orders (as opposed to market orders or marketable limit orders) in comparison

to what we know from previous studies. For the XETRA data, the limit to market order

ratio is 6.1, whereas this ratio is, for example, 1.1 for the Paris Bourse in November 1991

and 1.7 for the Stockholm Stock Exchange (SSE) from December 1991 through February

1992 (cf. Biais et al. 1995, Sand̊as 2001).

The descriptive statistics reveal three more interesting stylised facts of the data.

First, we present the frequency of market orders that execute not only at the best quote,

but also at prices strictly inside the book. We find that 15.2% of all market orders “walk

up the book,” which demonstrates the relevancy of liquidity supply beyond the best quotes.

Second, we find that bid-ask spreads are small, 9 basis points on average, which is consistent

with a very active and liquid market. Third, we find considerable cross-sectional variation

and thus decide to sort the sample stocks into quartiles based on trade activity. Earlier

work shows that informed trading is more important for small, less active stocks (cf. Easley

et al. 1996).

3 Structural Econometrics: The Glosten Model

To study the importance of informativeness for book liquidity we first follow Sand̊as (2001)

and estimate the structural parameters of the Glosten (1994) model. We briefly review the

model and the implied moment conditions used for GMM estimation, and then present our
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estimates.

3.1 General Features of the Model

There are two types of agents in the market: liquidity suppliers and liquidity demanders.

Liquidity suppliers are patient uninformed risk-neutral agents who submit limit orders to the

book to maximise expected profit. Liquidity demanders submit market orders and may have

private information about the value of the security. Liquidity demanders arrive randomly at

the market and we organise our time line accordingly. The sequencing of events is such that

between the arrival of market orders, the book is quickly updated by liquidity suppliers, as

illustrated in the following graph:

value

state of

Z(t−1)

value

book

true market
order

v(t−1) X(t)

true

v(t)
state of
book
Z(t)

market
order
X(t+1)

true
value
v(t+1)
state of
book
Z(t+1)

time

where Xt is the signed market order size (number of shares), vt is the true value of the

security after arrival of market order Xt, and Zt captures the state of the order book (e.g.,

bid-ask spread, depth at the best quote).

Liquidity demanders. The liquidity demander who arrives at time t submits a

market order of size Xt, a number that is positive for buys and negative for sells. We assume

that buys and sells are equally likely and Xt is independent from Xs for s 6= t. For order

size, we assume a symmetric, two-sided exponential distribution:

f(|Xt|) =
1

2λ
e

|Xt|
λ (1)

where λ > 0 is the average order size in absolute terms. To capture trade informativeness,

we assume the following process for the true value of the security vt right after the arrival
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of the market order at event time t:

vt = E[vt|vt−1, Xt] + ηt = c+ vt−1 + αXt + ηt (2)

where ηt accounts for the arrival of public information between the trades at event time t

and at t − 1. The key parameter in the model is α, which captures the informativeness

(with respect to the asset value) of the arriving market order. We refer to the parameter as

Glosten’s alpha.

Liquidity suppliers. We assume that liquidity suppliers incur fixed order-processing

cost γ when transacting with incoming market orders. They submit limit orders right after

the arrival of market order Xt at various prices until the marginal order at each of these

prices breaks even. For example, suppose that price level p1,t is the lowest price above vt

at which it is profitable to supply a limit sell of strictly positive quantity. Limit orders will

fill the book at this price and the expected profit on the q1,tth share at price level p1,t, is

determined by:

E[(p1,t − E[vt+1|Xt+1]− γ)I[Xt+1>q1,t]], (3)

where (p1,t − E[vt+1|Xt+1]) is the difference between the price the limit order trades at and

the expected fundamental value conditional on the next market order Xt+1. I[Xt+1>q1,t] is

an indicator function that is one if Xt+1 is larger than q1,t—in which case the limit order

executes—and zero otherwise. A zero expected profit condition on the last unit (as the queue

clears according to first-come-first-served time priority) determines the equilibrium depth q1,t

at the best ask price p1,t. Once the equilibrium depth is reached, limit order traders will

consider submitting a unit at the next price on the grid, one tick above p1,t. They consider

adding this unit, because the revenue they get on execution is one tick higher than on p1,t.

The equilibrium depths on both sides of the limit order book are given by the recursions:

q+k,t =
p+k,t − vt − γ

α
−

+k−1
∑

i=+1

qi,t − λ k = 1, 2, . . . (ask side) (4)

q−k,t =
vt − p−k,t − γ

α
−

−k+1
∑

i=−1

qi,t − λ k = 1, 2, . . . (bid side).

The state of the book is described by the set of bid (p−k,t) and ask (p+k,t) prices and their

associated depths (q−k,t and q+k,t). Equation 4 shows that the trade informativeness measure
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α is a key determinant of book liquidity.

3.2 Moment Conditions

We follow Sand̊as (2001) and use three types of moment conditions: two of these are based

on equation (4) where we assume that limit order books have refilled to equilibrium when

we take snapshot t (which will be just before the arrival of the next market order Xt+1).

The third condition identifies the expected market order size λ.

Break-even conditions. For the first type of moment conditions, we use informa-

tion in the book. In order to eliminate the fundamental value, we add the equilibrium depth

associated with the kth price at the bid side of the book from the corresponding equation

at the ask side of the book (see equation (4)) and assume that the equations hold up to an

error term:

E

(

p+k,t − p−k,t − 2γ − α

(

+k
∑

i=+1

qi,t +
−k
∑

i=−1

qi,t + 2λ

))

= 0. k = 1, 2, . . . (5)

Updating restrictions. For the second type of moment conditions, we use the

time dimension and subtract the kth price in the book at time t − 1 from the kth price at

time t. This removes the fundamental asset value vt of equation (2), and we get:

E

(

∆p+k,t − α

(

+k
∑

i=+1

qi,t+1 −
+k
∑

i=+1

qi,t

)

− c− αXt

)

= 0 k = 1, 2, . . . (6)

E

(

∆p−k,t + α

(

−k
∑

i=−1

qi,t+1 −
−k
∑

i=−1

qi,t

)

− c− αXt

)

= 0 k = 1, 2, . . .

where ∆pk,t = pk,t − pk,t−1.

Market order size condition. We use the expected size of the market order to

identify λ (see equation (1))via

E(|Xt| − λ) = 0. (7)
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3.3 GMM Estimation Results

We use GMM to estimate the structural model based on the four best quotes on both sides

of the book. This yields thirteen moment conditions: four from the break-even conditions of

equation (5), eight from the updating restrictions of equation (6), and one from the market

order size condition of equation (7). The estimation is based on event time, where the arrival

of a market order marks an event. In the implementation, we take the snapshot of the order

book just ahead of the arrival of the next market order, whereby we assume that durations

between trades—time between market order arrivals—are long enough so that competitive

limit order traders have time to refill the book in between trades. We consider this a credible

assumption for our sample, given the high limit order activity. As pointed out above, on

average 6.1 limit orders are submitted in between two market order arrivals (see Table 1).

[insert Table 2 here]

Table 2 reports the GMM estimates of all parameters in the Glosten-model. We

estimate on a stock by stock basis, but report averages per trade activity quartile (where

Q1 contains the most actively traded stocks) in order to conserve space. We standardise the

informativeness measure α to enable meaningful comparison across stocks:2

αG = α
e50, 000

P 2
(8)

where P is the average price for the stock throughout the sample period. We use the super-

script G to indicate that it is the Glosten-α, which we will later compare to an alternative

measure, the Hasbrouck-α. We interpret αG, in the context of the Glosten-model, as the

relative price impact of a e50,000 market order.

Our findings are similar to those reported by Sand̊as (2001). First, we find that

trade informativeness αG decreases monotonically with trade activity in the cross-section.

Market orders seem to be most informative for the least actively traded stocks’ quartile (Q4),

which contains the smallest stocks in terms of market capitalisation (see Table 1). Second,

we find that the transaction cost parameter γ is significantly negative, which is worrisome in

the context of the Glosten-model. Third, and most discomforting, the GMM J−test rejects

the model for 29 out of the 30 stocks.

We proceed with separate estimation of the break-even conditions and the updating

restrictions to analyse why the model is rejected. We find that the α estimates based on
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the break-even conditions remain significantly positive, whereas those based on the updating

restrictions turn insignificant for most of the stocks. It seems that α is identified primarily

through snapshots of the book at a single point in time and not on updating of the value vt

after the arrival of market orders. This evidence is consistent with Sand̊as’ paper who finds

that the Glosten-αs estimated on the break-even conditions are about nine times higher than

those based on the updating restrictions (Sand̊as (2001, Table 5)).

In the second part of our empirical analysis, we deviate from Sand̊as’ (2001) struc-

tural approach, and rely on time series econometrics to study the importance of trade in-

formativeness for book liquidity. We abandon the structural model for two reasons. First,

the approach requires strong model assumptions in building the moment conditions (e.g.

exponential order size distribution, independence of Xt). These assumptions might not be

justifiable in real-world markets. Second, the model restricts the same parameter (α) to

capture the shape of the book and the value update based on arriving market orders. The

assumption is that the book replenishes and fully reveals the long-term impact (i.e. the

informational content) of the trade before the next market order arrives. In the time se-

ries approach, we separate book liquidity from informativeness of market orders to check

whether, as the Glosten-model predicts, book liquidity is low during times of highly infor-

mative market orders. We rely on Granger causality to identify such effect.

4 Time Series Econometrics: Trade Informativeness

and Book Liquidity

In this section, we use the time series dimension to study trade informativeness and order

book liquidity. First, we analyse the time series properties of the trade informativeness

measure proposed by Hasbrouck (1991). Second, we motivate three measures for book

liquidity to capture both the spread and the depth of the book. Finally, we analyse the

interaction of trade informativeness and book liquidity based on a Granger-causality test

including appropriate control variables to isolate the effects of interest.

For our analysis, we aggregate the event-time calendar used for GMM estimation.

In particular, we group N subsequent market orders into one time interval t. N is chosen in

order to retain sufficient observations to estimate Hasbrouck’s trade informativeness measure.

Our procedure is best explained by the following graph where trade arrivals are denoted by
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circles and N = 3:

snapshot 

time interval t+1 time interval t+2

snapshot snapshot 

time interval t

time

orderbook t+1orderbook torderbook t−1

We choose N to trade off too few observations and too little time variation. We

therefore set N equal to 250 for the quartile of most actively traded stocks (Q1) yielding an

average of 14.9 periods per trading day, each lasting 34 minutes on average. We take less

observations per interval for the three other quartiles by setting N = 200 for Q2, N = 150

for Q3, and N = 100 for Q4. By definition, these quartiles trade less frequently than Q1 so

that for equal N we would obtain too few intra-day estimation intervals. Also, these smaller

values of N ensure that the average time lengths of the intervals are comparable to Q1. The

resulting average interval lengths are 43 minutes for Q2, 61 minutes for Q3, and 60 minutes

for Q4. For robustness checks, we try various values for N and find that our main results

are not affected.

4.1 Measuring Time-Varying Trade Informativeness

We use the N trades in a time interval to identify trade informativeness following closely

Hasbrouck (1991). The approach relies on estimates of the following bivariate vector autore-

gression (VAR):

rt,τ = a1trt,τ−1 + a2trt,τ−2 + . . .+ b0tXt,τ + b1tXt,τ−1 + b2tXt,τ−2 + . . .+ ut,τ (9)

Xt,τ = c1trt,τ−1 + c2trt,τ−2 + . . .+ d1tXt,τ−1 + d2tXt,τ−2 + . . .+ wt,τ

where τ ∈ {1, . . . , N} runs over all midquote changes in time interval t, rt,τ is the midquote

change from order book snapshot τ − 1 to snapshot τ in interval t, and Xt,τ is the signed

order size of trade τ in interval t (it is zero if there was no transaction at the time of the

midquote change). We use the subscript t to indicate the coefficients that belong to time

interval t. We assume that the innovations ut,τ and wt,τ are i.i.d. and contemporaneously
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uncorrelated.

To identify the long-term impact of a trade, we consider the vector moving average

representation of the VAR in equation (9) (assuming stationarity):

rt,τ = ut,τ + a∗1tut,τ−1 + a∗2tut,τ−2 + . . .+ b∗0twt,τ + b∗1twt,τ−1 + . . . (10)

Xt,τ = c∗1tut,τ−1 + c∗2tut,τ−2 + . . .+ wt,τ + d∗1twt,τ−1 + . . . (11)

where b∗0t identifies the immediate price impact of a market order. The permanent price

impact of a market order in time interval t can now be obtained as:

αH
t = (

∞
∑

i=0

b∗it)
e50, 000

P 2
(12)

where the second factor on the right-hand side of the equation scales the coefficient in the

same way as was done for the Glosten-α (see equation (8)).

[insert Table 3 here]

In the VAR estimations, we use ten lags to ensure uncorrelated residuals. Hasbrouck (1991)

chooses five VAR lags, and Dufour and Engle (2000), who extend Hasbrouck’s methodology,

choose the same lag length. The choice of ten lags in our sample ensures serially uncorrelated

VAR residual series for all stocks. The variation of the lag length within the range indicated

by Akaike information criteria does not affect the results of the later stages which make

use of the trade informativeness estimates. The increased lag length which is indicated for

our recent data supports the view that order splitting/algorithmic trading became more

important since the early 1990s.

We follow Hasbrouck (1991) and truncate the infinite sum of equation (12) at lag

forty. As above, we estimate the VAR stock by stock and report the quartile averages.

Table 3 reports the average Hasbrouck-α as well as its time series characteristics.

We find that the average Hasbrouck-α is similar to the average Glosten-α. For the quartile

of most actively traded stocks (Q1), we find an average αH of 0.08 basis points, which is

very close to the average αG of 0.09 basis points reported in Table 2. For the other quartiles,

the differences are somewhat larger, and the Hasbrouck-α is consistently smaller than the

Glosten-α. We interpret the similarity of the Glosten- and Habsrouck-α estimates, which are

13



obtained by very different methodologies, as further evidence that the updating restrictions

are a poor measure of trade informativeness in the GMM test of the Glosten-model. In

Section 3.3, we showed that separate estimation of the break-even conditions (based on

book depth) and updating restrictions shows that the (overall) Glosten-α estimate largely

captures book depth, as it is insignificant in the updating restrictions. Apparently, order

book changes in between market orders, captured by these updating restrictions, are not

able to identify trade informativeness. The Hasbrouck-α captures the long-term impact of

trades and its similarity to the Glosten-α can therefore be interpreted as support for the

Glosten-model.

[insert Figure 1 here]

We further find that trade informativeness is a persistent, mean-reverting process with a

distinct intra-day pattern. Figure 1 plots the average αH for 90-minute intervals within the

trading day. We generally find that informativeness decreases during the course of the day,

which is consistent with the hypothesis that the bulk of price discovery is taking place after

the opening of the market. For the quartile of most actively traded stocks (Q1), we find a

significant increase of trade informativeness during the interval from 15:00 to 16:30 C.E.T.,

which contains the NYSE opening time (15:30 C.E.T.). Not surprisingly, all Q1 shares are

cross-listed in New York, whereas few of the stocks in the other quartiles are inter-listed.

Menkveld (2008) finds the same pattern for British and Dutch ADRs and argues that some

traders prefer to trade during the overlap and split orders in order to benefit from two pools

of liquidity.

We remove intra-day seasonality (diurnality) of the αH estimates by dividing by the

time-of-day means, and then compute first-order autocorrelations. We find persistence as

first-order autocorrelations are significant for all quartiles, ranging from 0.28 to 0.38 (see

Table 3). We also report inter- and intra-day correlations separately, and find that both are

positive, although only intra-day autocorrelations are statistically significant.

The substantial time variation and predictability in trade informativeness is useful to

analyse how important trade informativeness is for book liquidity. The persistence suggests

that informative trades cluster in time so that we can discriminate times of informative

market order trading and times with relatively uninformed market orders. We will study

book liquidity at these times to gauge the importance of trade informativeness. Before we

turn to this analysis, we first construct appropriate measures of book liquidity.
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4.2 Measuring Time-Varying Book Liquidity

We summarise limit order book liquidity at snapshot t (taken at the end of the tth estimation

window) through three measures: the quoted bid-ask spread and two measures of book depth.

In the remainder of the paper, we focus on the results for the ask side of the limit order

book, and leave out the bid side to conserve space. The results are very similar for both

sides.

Our depth measures captures the price concession from the best ask rather than

the midquote in order to purge the measure of a quoted spread effect (measured separately).

Price concessions are calculated for an average-sized and a large buy value. Price concessions

are calculated relative to a book state where the depth at the best ask can fill the total volume

of the buy order. Formally, we use

ap(V ) =

∑

∞

k=0 Ik(V )pkqk
∑

∞

k=0 Ik(V )p1qk
− 1 (13)

where

Ik(V ) =











1 if
∑k

i=1 qipi ≤ V
V−

∑k−1

i=1
qipi

qkpk
if
∑k−1

i=0 qipi ≤ V <
∑k

i=1 qipi

0 otherwise.

(14)

For ease of notation, we define a summation from i to j with j < i to be zero (as this

happens in the second line in equation (14) for k = 1. The depth measure ap(V ) is zero if

the market buy order of size V fills at the best ask and becomes strictly positive if it has to

walk up the book and consume the depth displayed at higher prices. A large price concession

indicated by a large ap(V ) therefore indicates poor book liquidity at and behind the best

quote. We compute the depth measure (13) for V = e50,000 and e200,000, respectively. In

the remainder of the paper, we use ap(50) and ap(200), respectively, to refer to these depth

measures.

4.3 Informativeness and Liquidity: Granger Causality

We use time-varying trade informativeness and book liquidity to determine whether trade

informativeness is an important determinant of book liquidity. We benefit from slow mean-

reversion in the trade informativeness process to discriminate highly informative from rel-
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atively uninformative trade periods. We also study whether book liquidity predicts next

period trade informativeness, which could be the case when limit order submitters know of

an oncoming information event that is not predicted by the informativeness of lagged order

flow (e.g. a pre-scheduled company news release).

For the remainder of the analysis we standardise all data series—α and the book

liquidity measures—in order to be able to compare across intra-day time intervals and across

stocks. For that purpose, we divide the trading day into six 90-minute time intervals (see

also Figure 1). For each stock and each variable, we then remove the diurnality by dividing

the time series xt by its time-of-day mean (i.e. we replace xt by xt/xi where i ∈ {1, . . . , 6}

is the time interval t falls into and xi is the average of all xt in that interval). Furthermore,

in order to account for heteroskedasticity across stocks, we scale the resulting time series by

their stock-specific standard deviation (i.e. we replace the diurnally adjusted xt by xt/σxt

where σxt
is the standard deviation of the diurnally adjusted xt). The slope coefficients in the

Granger-causality analysis below should therefore be interpreted as the amount of change

of the dependent variable (in terms of its standard deviation) on a one standard deviation

change of the explanatory variable.

4.3.1 Trade informativeness as a determinant of book liquidity.

Before turning to the Granger causality analysis, we first plot book liquidity against trade

informativeness. By construction, the book snapshot t is at the end of time interval t, which

contains the N trades that are used to calculate αH (see graph at the start of Section 4).

To study whether informativeness matters for subsequent book liquidity, we therefore plot

the three book liquidity measures against αH
t where we group the α into quartiles.

[insert Figure 2 here]

Figure 2 illustrates that book liquidity decreases monotonically in trade informative-

ness. Panel A illustrates that the bid-ask spread increases linearly in trade informativeness.

The spread is 10% higher at times of highest trade informativeness relative to times of low-

est trade informativeness. Panel B and C illustrate that trade informativeness has an even

stronger effect on the two depth measures (ap(50) and ap(200), respectively) as depth is 20%

lower comparing the two tail quartiles. And, the marginal effect seems to be increasing in

trade informativeness.
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We now turn to Granger causality regressions to study whether trade informativeness

causes book liquidity. We propose the following regression:

yt = c+ δαH
t + β1yt−1 + . . .+ βpyt−p + φ1z1,t + . . .+ φqzq,t + εt (15)

where yt is one of the three book liquidity measures (spread, ap(50), or ap(200)), zi,t are

control variables that are based on the N trades in time interval t to capture market condi-

tions other than trade informativeness. εt is an i.i.d. disturbance. The regression indicates

Granger causality if δ is statistically significant so that trade informativeness explains book

liquidity over and above its predicted value based on its own past. By adding control vari-

ables, effectively, we consider the component of trade informativeness that is orthogonal to

other indicators measuring trading conditions. If, in this case, δ is significant, we can at-

tribute the effect uniquely to informativeness and not to other correlated trading variables.

[insert Table 4 here]

Table 4 shows all control variables, their pairwise correlations, and their correlations

with αH
t and the three book liquidity measures. We use evidence from the microstructure

literature (see Madhavan (2000) or Biais et al. (2005) for a survey) to motivate five control

variables. First, we include the trade size averaged over the estimation interval (tsize).

This accounts for a potential size effect driving the significance of the trade informativeness

measure if large trades are more informative than small trades. Second, we include the

signed trade volume imbalance over the estimation interval (simb), in order to account

for an asymmetric effect on book liquidity. Third, we add mean inter-trade time duration

over the estimation interval (dura) to control for fast markets that allegedly indicate more

informative trades (see Dufour and Engle (2000)). Fourth, we compute realised volatility (rv)

over the estimation interval. Including it as another control variable we aim to differentiate

trade informativeness from picking-off risk induced by volatility shocks caused by the arrival

of public information. rv is computed by summing squared midquote returns within the

estimation interval. Midquotes are sampled immediately before the trade events within

the interval. The idea to use high frequency sampled midquote changes to estimate and

forecast lower frequency fundamental price volatility goes back to Andersen et al. (2003).

Fifth, we add the absolute value of trade imbalance (imb) to control for trading volume.

We prefer this proxy to the conventional volume measure as it better captures the net

pressure on liquidity suppliers. The correlations of these five control variables with αH
t are

significantly positive for trade size, duration, realised volatility, and volume. Periods with
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highly informative trades, therefore, tend to show large trades in slow markets with high

volatility and high volume. These correlations are as expected, except maybe for inter-trade

duration. Short trade durations in the Xetra limit order book setting are associated with

relatively uninformative trades. This is in contrast to the findings reported in Dufour and

Engle (2000) for the 1991 NYSE market. However, Grammig et al. (2007), who propose a

structural modelling alternative to Dufour and Engle’s (2000) time series approach, also find

that fast trading in the Xetra limit order book cannot be associated with informed trading.

They refer to the crowding-out effect described by Parlour (1998) to explain their finding.

Crowding-out means that ample liquidity - a market state that we do not associate with

asymmetric information - causes intense uninformed market order trading. By submitting a

market order, an impatient (yet not superiorly informed) trader can jump ahead of a lengthy

queue of limit orders at the best quotes.

[insert Table 5 here]

Panel A of Table 5 summarises the regression results using the quoted spread as

dependent variable. Trade informativeness is significant for eight out of thirty stock-specific

regressions. The parameter carries the correct sign, since at times of high trade informa-

tiveness the book exhibits higher bid-ask spreads. We find that the effect is economically

significant as a one standard deviation change of trade informativeness increases the spread

by 8% of its standard deviation. The quartile-specific results show that the effect increases

monotonically in trade activity. It is strongest for the least actively traded stocks. Re-

garding the control variables, we find that realised volatility is the only variable more often

significant than trade informativeness (for fourteen stocks). It also has a stronger economic

significance, as a one standard deviation increase in realised volatility increases the spread

by 15% of its standard deviation.

Panels B and C of Table 5 report the results for the two depth measures ap(50) and

ap(200) which show that trade informativeness is important primarily for depth further into

the book. Using ap(50) as dependent variable in (15), trade informativeness is statistically

significant for six stocks, while it is statistically significant for seventeen sample stocks when

ap(200) is used as the dependent variable in (15). The estimated coefficients have the correct

sign, as high informativeness implies higher price concessions. The effects are economically

significant as a one standard deviation change in trade informativeness increases ap(50)

by 7% and ap(200) by 12% of the respective standard deviation. Trade informativeness is

economically and statistically more important than realised volatility, which is the second-

most relevant variable. For ap(200), we again find a monotonic relationship across activity
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quartiles, where the least active quartile shows the strongest effect.

4.3.2 Book liquidity as a determinant of trade informativeness.

The Glosten model does not only predict that informativeness Granger-causes book liquidity,

but also implies reverse causality. If limit order traders who fill the book at the end of

period t know more about the oncoming period than what could be predicted from current

and past period informativeness, the book could Granger-cause next period informativeness.

For example, traders might know that a company is about to issue a press release, which,

of course, leads to an immediate quote update, but also to market orders that are highly

informative. This is the case when the public information leads to “allocational” trades due

to portfolio re-balancing based on public news (see Vayanos (2001)). The econometrician

cannot predict such event based on past trade informativeness.

We test whether book liquidity Granger-causes trade informativeness through the

following regression:

αH
t = c+ β1α

H
t−1 + . . .+ βpα

H
t−p + δ1y1,t−1 + . . .+ δryr,t−1 + φ1z1,t−1 + . . .+φqzq,t−1 + εt (16)

where the control variables zi,t are the same as in equation (15). For the measures of

book liquidity, yi,t, we use quoted spread and our two price concession measures ap(50) and

ap(200). We add a book asymmetry measure that is defined as the ask price concession

minus the bid price concession: dpi50 = ap(50)-bp(50) and dpi200 = ap(200)-bp(200). A

low value indicates that it is more expensive to sell than to buy, which might foreshadow a

downturn. Facing a downturn threat, limit order traders might rely more on the direction of

future market orders for price discovery. This would imply increased trade informativeness.

[insert Table 6 here]

The regression results in Table 6 indicate that book liquidity Granger-causes trade informa-

tiveness. We find that a high quoted spread causes trades to be significantly more informative

in the oncoming period for 11 out of 30 stocks. In addition, we find that low depth causes

increased trade informativeness, albeit primarily for ap(200). We find it to be significant

for 22 stocks. Interestingly, the book depth asymmetry measure for large trades is also sig-

nificant for 15 stocks. The negative sign of the parameter estimate is consistent with the

intuition that market orders are more informative when selling is relatively expensive. As
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for the control variables, we find strong statistical significance only for trade size, as large

trades predict lower trade informativeness in the oncoming period for 17 stocks.

5 Discussion of the Results

Overall, we find evidence that trade informativeness matters for book liquidity in limit

order markets. Along with realised volatility it performs better than any other variable

that captures trading conditions such as trading intensity, trading volume and order book

imbalance. There are, however, some issues that are worthy of discussion.

First, we want to emphasise that book liquidity and trade informativeness are not

the same thing. It is true that on poor book liquidity subsequent market orders have a

large price concession by definition. However, it is not the immediate price impact that

represents the adverse-selection that the Glosten model accounts for. In fact, part of the

price concession is temporary and exists to compensate liquidity suppliers for their order-

processing cost. In theory, if market orders are not informative (as assumed in most of the

dynamic models) all of the price concession would be temporary.

Second, the Granger causality results warrant some discussion. When constructing

the data series for the causality test, we are forced to aggregate across market orders and

create time intervals. We do this to estimate the Hasbrouck model and determine the long-

term price impact of a trade. In the test, we pursue the Granger causality idea that one

should have explanatory power beyond from what can be predicted from a series’ own past.

One could argue that we have not accurately controlled for book liquidity’s own past, as

we include only lagged book snapshots from before the trade interval. Ideally, we want to

include the snapshot from before the previous market order, but we cannot do this as we

need the aggregation to identify the long-term price impact. An alternative interpretation of

our test is that it does show that trade informativeness is significant in explaining subsequent

book liquidity beyond the prediction from its own past from before the trade interval.
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6 Conclusion

We analyse three months of limit order book data—January through March 2004—from the

German Stock Exchange for the thirty DAX stocks to test the predictions of the Glosten

(1994) model. One of the key predictions is that order books are filled by competitive limit

order traders, so that, in equilibrium, the marginal order just earns enough to make up

for order-processing cost and the adverse-selection cost of executing against a (potentially)

privately informed market order.

First, we follow Sand̊as (2001) and estimate the parameters of the Glosten model di-

rectly using GMM. We reject the model econometrically and diagnose that the key parameter

α, which measures the level of private information in market orders, is primarily identified

on book restrictions and not on the updating restrictions that should track the information

in the trade. Second, we leave the structural model and exploit the time dimension to study

whether trade informativeness matters for book liquidity. We develop measures for book

liquidity and use the Hasbrouck (1991) methodology to gauge trade informativeness. We

document that trade informativeness Granger-causes book liquidity with the strongest sta-

tistical and economical significance for large order price concessions (“behind the market”).

To robustify these results we control for various other determinants of LOB liquidity, such

as realised volatility, trading intensity, trade size, and order book imbalance. Among these,

we find that only realised volatility rivals trade informativeness in terms of economic and

statistical significance. In particular, realised volatility is more relevant for top-of-the-book

liquidity, whereas informativeness is more important for beyond-the-best-quote liquidity.

We interpret these results as support for prominent theoretical models of limit order

book markets. First, our finding that trade informativeness is one of the most important

explanatory factors for book liquidity supports Glosten’s (1994) model which explains order

book equilibrium with order-processing costs and information asymmetry. Second, the find-

ing that realised volatility is more important than trade informativeness for top-of-the-book

liquidity supports a key result of dynamic limit order book models like that developed by

Foucault (1999). These models start from symmetric information and assume that the key

cost to limit orders is picking-off risk. That is, limit orders are costly if they are consumed

before cancelled on the arrival of public information. This cost is particularly relevant “at

the market”, which explains the result that realised volatility is more important than trade

informativeness for top-of-the-book liquidity.
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Notes

1We define “price concession” as the hypothetical transaction price for a given trade volume relative to a

reference price (e.g., the midquote or the best quote). For limit order markets, we prefer price concession to

the bid-ask half spread as a measure of liquidity, since depth at the best quote is often too small to transact

the market order, which then runs up the book.

2Traders seem to transact in terms of value, not in terms of number of shares. That is, we find that

the average value per trades is similar across stocks, which is not true for the average number of shares per

trade. The reason is that, in the cross-section, stocks trade at different price levels.
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Table 1: Characteristics of the stocks in the sample (DAX30 stocks).

Ticker Company Name market cap. % agg. daily nb. daily nb. daily nb. price spread spread activity
(mill. e) trades trades subm. cancel. (e) (e) (%) quartile

ALV ALLIANZ 33,805 21.4 4,523 29,791 25,882 100.1 0.05 0.05

Q1
DTE DEUTSCHE TELEKOM 34,858 5.0 4,445 14,498 11,009 15.7 0.01 0.07
SIE SIEMENS 52,893 16.7 4,418 23,659 19,920 64.0 0.03 0.05
DBK DEUTSCHE BANK 38,228 19.3 3,961 23,169 19,772 67.2 0.03 0.05
MUV2 MUENCHENER RUECK 16,396 20.7 3,425 20,154 16,894 93.9 0.06 0.06
DCX DAIMLERCHRYSLER 30,316 14.5 3,309 18,722 15,919 36.4 0.02 0.06
EOA E.ON 33,753 13.6 2,871 18,899 16,468 52.5 0.03 0.06
SAP SAP 27,412 21.9 2,806 19,733 17,095 131.5 0.08 0.06

Q2
IFX INFINEON 4,790 8.6 2,799 10,320 7,744 11.6 0.01 0.10
BAS BASF 25,425 13.8 2,580 18,211 15,898 43.3 0.03 0.06
VOW VOLKSWAGEN 9,688 16.0 2,545 13,474 11,273 39.2 0.03 0.07
BAY BAYER 15,911 12.4 2,400 15,258 12,988 23.1 0.02 0.08
RWE RWE 12,653 13.0 2,314 14,438 12,355 33.8 0.03 0.08
BMW BMW 12,211 14.4 2,110 14,736 12,764 34.7 0.02 0.07
HVM BAY.HYP.VEREINSBANK 6,629 15.0 1,937 10,204 8,293 18.7 0.02 0.11
SCH SCHERING 7,055 16.2 1,523 9,111 7,669 40.8 0.04 0.09

Q3
CBK COMMERZBANK 7,569 12.6 1,450 11,922 10,476 15.4 0.02 0.11
LHA LUFTHANSA 4,548 11.9 1,352 8,079 6,780 14.2 0.02 0.12
DPW DEUTSCHE POST 6,806 11.0 1,315 6,861 5,666 18.2 0.02 0.11
TKA THYSSEN-KRUPP 6,450 11.3 1,262 7,864 6,672 15.9 0.02 0.13
MEO METRO 5,018 15.7 1,235 7,975 6,702 35.0 0.04 0.12
ALT ALTANA 3,338 18.9 1,095 7,718 6,609 48.6 0.05 0.10
TUI TUI 2,025 17.6 1,063 6,767 5,714 18.7 0.03 0.14
MAN MAN 2,434 13.0 1,057 7,214 6,235 27.7 0.03 0.12

Q4
CONT CONTINENTAL 4,060 13.5 1,002 8,036 7,052 31.6 0.04 0.11
DB1 DEUTSCHE BOERSE 4,847 18.4 982 6,598 5,698 46.9 0.04 0.10
ADS ADIDAS-SALOMON 4,104 20.1 980 8,057 7,105 92.6 0.08 0.09
LIN LINDE 3,448 15.8 896 8,342 7,454 43.6 0.05 0.11
HEN3 HENKEL 3,682 16.6 702 7,989 7,306 65.9 0.07 0.10
FME FRESENIUS 1,944 16.7 621 5,764 5,195 54.0 0.07 0.13

Average 14,076 15.2 2,099 12,785 10,887 44.5 0.04 0.09

Note: The statistics are computed based on market event data covering the sample period January 2, 2004 to March 31, 2004. Column market
cap. gives the market capitalisation of the respective stock in million euros at the end of December 2003. % agg. trades is the percentage of
total trading volume executed beyond the best quotes (aggressive trades). daily nb. trades denotes the average daily number of trades. Column
daily nb. subm. reports the average number of order submissions per day, market orders excluded and daily nb. cancel. the average number
of order cancellations per day. price (e), spread (e) and spread (%) are average midquote, spread and relative spread over the three months
sample period. The stocks are sorted into four groups (activity quartiles, Q1-Q4) according to their trading frequency, i.e. by the column daily
nb. trades. Horizontal lines separate the four groups.
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Table 2: Estimation results of the S̊andas/Glosten model

.

α× 103 γ λ cv × 103 J(9) no reject αG × 103

all stocks
0.013 -0.010 1.380 0.030

643.7 2 0.326
167.3 52.5 133.1 2.2

Q1 0.009 -0.006 1.600 0.029
1985.3 0 0.087

(most active) 249.6 50.5 188.8 2.5

Q2
0.008 -0.008 1.724 0.088

539.8 0 0.189
170.3 55.7 147.1 2.0

Q3
0.008 -0.010 1.517 -0.063

91.9 1 0.471
143.1 54.9 108.5 2.1

Q4 0.029 -0.018 0.610 0.071
51.6 1 0.555

(least active) 109.3 48.2 89.4 2.1

Note: The estimation uses the information from the best four quotes of the visible books to form update
and break-even conditions. The table reports in bold face font the first stage GMM estimates of α, γ, λ
and cv which are averaged across all stocks as well as across the stocks in the respective trading activity
quartile. The values printed in regular font are t−values which are also group averages. The J(9) column
is the group average of the GMM J− statistic (with 9 degrees of freedom). Column no reject reports the
number of stocks for which the model is not rejected at 1% significance level. The last column reports the
group averages of the standardised trade informativeness measure αG (Glosten-α, see equation (8)).
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Table 3: Cross-sectional and time series properties of estimated trade informativeness measures
αH and immediate impacts bH .

αH × 103 min max ρ ρinter ρintra bH × 103

all stocks 0.244 -0.016 0.963 0.328 0.162 0.352 0.139

Q1 0.076 0.005 0.279 0.365 0.158 0.387 0.042

(most active) 0.021 0.002 0.056 0.051 0.166 0.055 0.011

Q2 0.152 -0.011 0.649 0.355 0.168 0.380 0.089

0.041 0.034 0.260 0.114 0.181 0.113 0.025

Q3 0.335 -0.006 1.282 0.282 0.155 0.309 0.199

0.094 0.015 0.386 0.067 0.185 0.061 0.056

Q4 0.412 -0.055 1.639 0.311 0.166 0.333 0.224

(least active) 0.122 0.066 0.422 0.046 0.088 0.058 0.074

Note: The table reports sample means (bold font) and standard deviations (regular font) of αH (Hasbrouck-
α (see equation (12)) and the immediate impact computed as bH = b050,000

P 2 (see equations 10-12). Both αH

and bH are diurnally adjusted. For that purpose, the trading day is divided into 90 minutes intervals and
the (stock specific) sample mean of αH and bH in each interval is computed. Diurnally adjusted variables
result from dividing the raw series by the corresponding time-of-day means. To compute sample means and
standard deviations reported in the table, the diurnally adjusted series are pooled (overall and by trade size
quartile, respectively). The columns labelled min and max report the group averages of the smallest and
largest αH estimate (×103) for each stock. Column ρ reports the autocorrelation of the diurnally adjusted
αH sequence. ρinter is the inter-day correlation of the diurnally adjusted Hasbrouck-α, i.e. the correlation
between the previous day’s last and the next day’s first αH estimate. ρintra is the intra-day serial correlation
of the diurnally adjusted αH . Observations from different trading days are excluded for this computation.
Bold (regular) faced numbers are group averages (standard deviations) of the autocorrelations computed in
this way.
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Table 4: Correlation between the trade informativeness, liquidity measures and control variables.

αH ap(50) ap(200) spread tsize simb dura rv
ap(50) 0.11∗∗

ap(200) 0.19∗∗ 0.69∗∗

spread 0.11∗∗ -0.04∗∗ 0.00
tsize -0.46∗∗ -0.06∗∗ -0.11∗∗ -0.01
simb -0.02∗ 0.00 -0.01 0.02∗ 0.03∗∗

dura 0.11∗∗ 0.01 -0.01 -0.02∗∗ -0.34∗∗ -0.01
rv 0.28∗∗ 0.08∗∗ 0.14∗∗ 0.17∗∗ 0.08∗∗ 0.00 -0.14∗∗

imb -0.21∗∗ -0.03∗∗ -0.04∗∗ 0.04∗∗ 0.47∗∗ 0.06∗∗ -0.22∗∗ 0.06∗∗

Note: The table reports cross sectional averages of correlation coefficients for the DAX30 stocks. ap(50) and
ap(200) denote the hypothetical ask side price concessions for trades of e50,000 and e200,000, respectively.
spread is the quoted spread in basis points. These liquidity measures are sampled just before the first trade
occurs after the αH estimation interval. tsize denotes the trade size and dura the duration between two
consecutive trades averaged over the estimation interval. simb is the sum of the signed traded volumes
over the estimation interval; imb is the absolute value of simb. Realised volatility (rv) is computed as the
sum of the squared midquote returns with midquotes sampled just before a trade event occurs within the
estimation interval. All series are diurnally adjusted. For that purpose the trading day is divided into
90 minutes intervals and the (stock specific) mean of the respective variable in each interval is computed.
Diurnally adjusted variables result from dividing the raw series by their corresponding time-of-day means.
Computation of the correlations is based on an average (across stocks) of T = 692 observations. ** and *
indicate a mean correlation that is significantly different from zero at the 1 % and 5 % level, respectively.
The standard errors of the mean correlations are approximated by 1

√

TN
where N = 30.
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Table 5: Regression of book liquidity measures on trade informativeness and control variables.

αH rv tsize dura imb simb lag1 lag2 R2
adj

All stocks 0.080 0.147 -0.015 -0.005 0.047 0.014 0.001 0.004 0.051

Panel A

sig pos
(of 30)

8 14 0 2 5 0 0 0

spread

sig neg 0 0 3 3 0 1 1 0
Q1 (most active) 0.043 0.125 -0.065 -0.037 0.035 0.034 -0.010 0.003 0.034
Q2 0.068 0.168 -0.012 -0.015 0.043 0.007 -0.003 -0.012 0.061
Q3 0.089 0.192 0.002 0.005 0.036 -0.007 -0.007 0.024 0.067
Q4 (least active) 0.121 0.095 0.011 0.025 0.076 0.024 0.024 0.002 0.038

All stocks 0.068 0.063 -0.041 -0.008 0.004 0.003 0.009 0.005 0.015

Panel B

sig pos
(of 30)

6 5 0 0 0 1 0 0

ap(50)

sig neg 0 0 4 0 1 1 1 1
Q1 (most active) 0.077 0.047 0.022 -0.007 -0.030 0.018 0.002 0.012 0.010
Q2 0.060 0.041 -0.069 -0.010 0.034 0.013 0.014 -0.015 0.010
Q3 0.043 0.110 -0.056 -0.017 -0.009 -0.022 -0.001 0.013 0.019
Q4 (least active) 0.097 0.050 -0.055 0.004 0.017 0.006 0.021 0.011 0.022

All stocks 0.117 0.096 -0.072 -0.030 0.014 -0.004 0.041 0.042 0.054

Panel C

sig pos
(of 30)

17 13 0 0 1 1 1 4

ap(200)

sig neg 0 0 5 1 1 2 0 1
Q1 (most active) 0.108 0.099 -0.035 -0.036 0.005 0.001 -0.010 0.018 0.034
Q2 0.107 0.085 -0.082 -0.034 0.041 -0.006 0.052 0.030 0.048
Q3 0.124 0.126 -0.073 -0.030 -0.004 -0.005 0.046 0.046 0.064
Q4 (least active) 0.129 0.071 -0.096 -0.018 0.012 -0.006 0.076 0.076 0.071

Note: The book liquidity indicators spread, ap(50) and ap(200) are regressed on the trade-informativeness indicator αH and control variables.
The liquidity indicators are sampled just before the first trade occurs after the αH estimation interval. The regression also includes (in addition
to a constant and two lags of the dependent variable) the control variables realised volatility (rv), trade size (tsize), trade duration (dura),
unsigned trade imbalance (imb) and signed trade imbalance (simb). All variables are diurnally adjusted. See table 4 for computational details
of the procedure. To obtain comparable estimates across stocks dependent variables and regressors are standardised by division by the sample
standard deviations. The table reports OLS estimates averaged across stocks. sig pos (sig neg) counts the number of significant and positive
(negative) coefficients. The significance level is 5%. Adjusted coefficients of determination are averaged across stocks. The regressions use on
average 692 observations. Per activity quartile we have 953 (Q1), 744 (Q2), 516 (Q3), 537 (Q4) observations on average.
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Table 6: Regression of trade informativeness (Hasbrouck-α) on liquidity measures and control variables.

book liquidity indicators control variables

spread ap(50) ap(200) dpi50 dpi200 rv tsize dura imb simb lag1 lag2 R2
adj

All stocks 0.043 -0.070 0.204 0.030 -0.098 0.023 -0.096 0.045 0.004 0.005 0.189 0.130 0.164

sig pos
(of 30)

11 0 22 2 0 3 0 7 1 0 27 26

sig neg 0 6 0 0 15 0 17 0 0 2 0 0

Q1 0.064 -0.064 0.152 0.044 -0.081 0.048 -0.097 0.019 0.022 0.026 0.226 0.155 0.184

Q2 0.048 -0.088 0.208 0.044 -0.119 0.012 -0.115 0.047 0.006 -0.007 0.205 0.158 0.194

Q3 0.038 -0.040 0.193 -0.002 -0.074 0.004 -0.097 0.051 -0.009 0.000 0.161 0.097 0.124

Q4 0.020 -0.089 0.266 0.038 -0.118 0.033 -0.073 0.061 -0.003 0.005 0.167 0.111 0.156

Note: The trade informativeness measure αH is regressed on the book liquidity measures spread, ap50, ap200, as well as dpi50 and dpi200 which
denote the difference between the ask and the bid price concession for a hypothetical trade of e50,000 and e200,000, respectively. The liquidity
indicators are sampled before the first trade occurs after the previous αH estimation interval. The regression also includes (in addition to a
constant and two lags of the dependent variable) the control variables realised volatility (rv), trade size (tsize), trade duration (dura), unsigned
trade imbalance (imb) and signed trade imbalance (simb). These variables are computed using data from the previous αH estimation interval.
All variables are diurnally adjusted. See table 4 for computational details of the procedure. To obtain comparable estimates across stocks, the
dependent variable and the regressors are standardised by division by the sample standard deviations. The table reports stock group averages of
the OLS estimates. sig pos (sig neg) counts the number of significant and positive (negative) coefficients. The significance level is 5%. Adjusted
coefficients of determination are averaged across stocks. The regressions use on average T = 692 observations. Per activity quartile we have 953
(Q1), 744 (Q2), 516 (Q3), 537 (Q4) observations on average.
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Figure 1: Time-of-day patterns of the trade informativeness measure αH
j .

Left Panel: Q1 (most active) right panel: Q2

Left Panel: Q3 right panel: Q4 (least active)

Note: The four panels of the figure show 90 minutes averages of the estimated trade informativeness measures
αH
j . The averages are computed over all αH

j estimates in the respective 90 min. interval and over all stocks
belonging to the respective trading activity quartile. The top left panel displays the results for the first
quartile (most actively traded), the top right panel for the second quartile, the bottom left panel for the
third quartile and the bottom right panel for the fourth quartile (least active). The dashed lines represent
bounds of the 95% confidence interval.
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Figure 2: Book liquidity measures versus trade informativeness.

Panel A

Panel B

Panel C

Note: We pool time series of trade informativeness measures αH (Hasbrouck-α) for the 30 stocks and sort
them into quintiles. We then compute the quintile means of the book snapshot variables spread, ap(50) and
ap(200). Quintile means are represented as dots connected with solid lines. The small dots connected with
dashed lines are bounds of the 95% confidence intervals. Both αH and book liquidity measures are diurnally
adjusted (division by time-of-day mean) prior to the analysis. Diurnally adjusted book liquidity variables
are multiplied by 100 to obtain percentages.
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