96 research outputs found

    Unscreened Hartree-Fock calculations for metallic Fe, Co, Ni, and Cu from ab-initio Hamiltonians

    Full text link
    Unscreened Hartree-Fock approximation (HFA) calculations for metallic Fe, Co, Ni, and Cu are presented, by using a quantum-chemical approach. We believe that these are the first HFA results to have been done for crystalline 3d transition metals. Our approach uses a linearized muffin-tin orbital calculation to determine Bloch functions for the Hartree one-particle Hamiltonian, and from these obtains maximally localized Wannier functions, using a method proposed by Marzari and Vanderbilt. Within this Wannier basis all relevant one-particle and two-particle Coulomb matrix elements are calculated. The resulting second-quantized multi-band Hamiltonian with ab-initio parameters is studied within the simplest many-body approximation, namely the unscreened, self-consistent HFA, which takes into account exact exchange and is free of self-interactions. Although the d-bands sit considerably lower within HFA than within the local (spin) density approximation L(S)DA, the exchange splitting and magnetic moments for ferromagnetic Fe, Co, and Ni are only slightly larger in HFA than what is obtained either experimentally or within LSDA. The HFA total energies are lower than the corresponding LSDA calculations. We believe that this same approach can be easily extended to include more sophisticated ab-initio many-body treatments of the electronic structure of solids.Comment: 11 papes, 7 figures, 5 table

    Diving deep into digital literacy:emerging methods for research

    Get PDF
    Literacy studies approaches have tended to adopt a position which enables ethnographic explorations of a wide range of ‘literacies’. An important issue arising is the new challenge required for researchers to capture, manage, and analyse data that highlight the unique character of practices around texts in digital environments. Such inquiries, we argue, require multiple elements of data to be captured and analysed as part of effective literacy ethnographies. These include such things as the unfolding of digital texts, the activities around them, and features of the surrounding social and material environment. This paper addresses these methodological issues drawing from three educationally focused studies, and reporting their experiences and insights within uniquely different contexts. We deal with the issue of adopting new digital methods for literacy research through the notion of a ‘deep dive’ to explore educational tasks in classrooms. Through a discussion of how we approached the capture and analysis of our data, we present methods to better understand digital literacies in education. We then outline challenges posed by our methods, how they can be used more broadly for researching interaction in digital environments, and how they augment transdisciplinary debates and trends in research methods

    How well do we understand the reaction rate of C burning?

    Get PDF
    Carbon burning plays a crucial role in stellar evolution, where this reaction is an important route for the production of heavier elements. A particle-γ coincidence technique that minimizes the backgrounds to which this reaction is subject and provides reliable cross sections has been used at the Argonne National Laboratory to measure fusion cross-sections at deep sub-barrier energies in the 12C+12C system. The corresponding excitation function has been extracted down to a cross section of about 6 nb. This indicates the existence of a broad S-factor maximum for this system. Experimental results are presented and discussed

    Decay and Fission Hindrance of Two- and Four-Quasiparticle K Isomers in (254)Rf

    Get PDF
    Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73)μs have been discovered in the heavy Rf254 nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the Kπ=8-, ν2(7/2+[624],9/2-[734]) two-quasineutron and the Kπ=16+, 8-ν2(7/2+[624],9/2-[734])⊗ - 8-π2(7/2-[514],9/2+[624]) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomers in the lighter N=150 isotones. The four-quasiparticle isomer is longer lived than the Rf254 ground state that decays exclusively by spontaneous fission with a half-life of 23.2(1.1)μs. The absence of sizable fission branches from either of the isomers implies unprecedented fission hindrance relative to the ground state

    New constraints on the Al 25 (p,γ) reaction and its influence on the flux of cosmic γ rays from classical nova explosions

    Get PDF
    The astrophysical Al25(p,γ)Si26 reaction represents one of the key remaining uncertainties in accurately modeling the abundance of radiogenic Al26 ejected from classical novae. Specifically, the strengths of key proton-unbound resonances in Si26, that govern the rate of the Al25(p,γ) reaction under explosive astrophysical conditions, remain unsettled. Here, we present a detailed spectroscopy study of the Si26 mirror nucleus Mg26. We have measured the lifetime of the 3+, 6.125-MeV state in Mg26 to be 19(3)fs and provide compelling evidence for the existence of a 1- state in the T=1,A=26 system, indicating a previously unaccounted for=1 resonance in the Al25(p,γ) reaction. Using the presently measured lifetime, together with the assumption that the likely 1- state corresponds to a resonance in the Al25+p system at 435.7(53) keV, we find considerable differences in the Al25(p,γ) reaction rate compared to previous works. Based on current nova models, we estimate that classical novae may be responsible for up to ≈15% of the observed galactic abundance of Al26

    Broken seniority symmetry in the semimagic proton mid-shell nucleus <sup>95</sup>Rh

    Get PDF
    Lifetime measurements of low-lying excited states in the semimagic ( N = 50 ) nucleus 95Rh have been performed by means of the fast-timing technique. The experiment was carried out using γ -ray detector arrays consisting of LaBr3(Ce) scintillators and germanium detectors integrated into the DESPEC experimental setup commissioned for the Facility for Antiproton and Ion Research (FAIR) Phase-0, Darmstadt, Germany. The excited states in 95Rh were populated primarily via the β decays of 95Pd nuclei, produced in the projectile fragmentation of a 850 MeV/nucleon 124Xe beam impinging on a 4 g / cm2 9Be target. The deduced electromagnetic E2 transition strengths for the γ -ray cascade within the multiplet structure depopulating from the isomeric Iπ = 21 / 2+ state are found to exhibit strong deviations from predictions of standard shell model calculations which feature approximately conserved seniority symmetry. In particular, the observation of a strongly suppressed E2 strength for the 13 / 2+ → 9 / 2+ ground state transition cannot be explained by calculations employing standard interactions. This remarkable result may require revision of the nucleon-nucleon interactions employed in state-of-the-art theoretical model calculations, and might also point to the need for including three-body forces in the Hamiltonian

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
    corecore