32 research outputs found

    The Evolution of X-ray Bursts in the "Bursting Pulsar" GRO J1744-28

    Get PDF
    GRO J1744-28, commonly known as the `Bursting Pulsar', is a low mass X-ray binary containing a neutron star and an evolved giant star. This system, together with the Rapid Burster (MXB 1730-33), are the only two systems that display the so-called Type II X-ray bursts. These type of bursts, which last for 10s of seconds, are thought to be caused by viscous instabilities in the disk; however the Type II bursts seen in GRO J1744-28 are qualitatively very different from those seen in the archetypal Type II bursting source the Rapid Burster. To understand these differences and to create a framework for future study, we perform a study of all X-ray observations of all 3 known outbursts of the Bursting Pulsar which contained Type II bursts, including a population study of all Type II X-ray bursts seen by RXTE. We find that the bursts from this source are best described in four distinct phenomena or `classes' and that the characteristics of the bursts evolve in a predictable way. We compare our results with what is known for the Rapid Burster and put out results in the context of models that try to explain this phenomena.Comment: Accepted to MNRAS Aug 17 201

    Discovery of thermonuclear (Type I) X-ray bursts in the X-ray binary Swift J1858.6-0814 observed with NICER and NuSTAR

    Get PDF
    Swift J1858.6-0814 is a recently discovered X-ray binary notable for extremely strong variability (by factors of >100 in soft X-rays) in its discovery state. We present the detection of five thermonuclear (Type I) X-ray bursts from Swift J1858.6-0814, implying that the compact object in the system is a neutron star (NS). Some of the bursts show photospheric radius expansion, so their peak flux can be used to estimate the distance to the system. The peak luminosity, and hence distance, can depend on several system parameters; for the most likely values, a high inclination and a helium atmosphere, D = 12.8(-0.6)(+0.8) kpc, although systematic effects allow a conservative range of 9-18 kpc. Before one burst, we detect a QPO at 9.6 +/- 0.5 mHz with a fractional rms amplitude of 2.2 +/- 0.2 per cent (0.5-10 keV), likely due to marginally stable burning of helium; similar oscillations may be present before the other bursts but the light curves are not long enough to allow their detection. We also search for burst oscillations but do not detect any, with an upper limit in the best case of 15 per cent fractional amplitude (over 1-8 keV). Finally, we discuss the implications of the NS accretor and this distance on other inferences which have been made about the system. In particular, we find that Swift J1858.6-0814 was observed at super-Eddington luminosities at least during bright flares during the variable stage of its outburst

    Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

    Get PDF

    Thermonuclear Type-I X-ray Bursts and Burst Oscillations from the Eclipsing AMXP Swift J1749.4-2807

    Full text link
    Swift J1749.4-2807 is the only known eclipsing accreting millisecond X-ray pulsar. In this paper, we report on 7 thermonuclear (Type-I) X-ray bursts observed by NICER during its 2021 outburst. The first 6 bursts show slow rises and long decays, indicative of mixed H/He fuel, whereas the last burst shows fast rise and decay, suggesting He-rich fuel. Time-resolved spectroscopy of the bursts revealed typical phenomenology (i.e., an increase in black body temperature during the burst rise, and steady decrease in the decay), however they required a variable NHN_\mathrm{H}. We found that the values of NHN_\mathrm{H} during the bursts were roughly double those found in the fits of the persistent emission prior to each burst. We interpret this change in absorption as evidence of burst-disc interaction, which we observe due to the high inclination of the system. We searched for burst oscillations during each burst and detected a signal in the first burst at the known spin frequency of the neutron star (517.92 Hz). This is the first time burst oscillations have been detected from Swift J1749.4-2807. We further find that each X-ray burst occurs on top of an elevated persistent count rate. We performed time-resolved spectroscopy on the combined data of the bursts with sufficient statistics (i.e., the clearest examples of this phenomenon) and found that the black body parameters evolve to hotter temperatures closer to the onset of the bursts. We interpret this as a consequence of an unusual marginally stable burning process similar to that seen through mHz QPOs.Comment: accepted for publication in MNRAS, 12 pages, 11 figure

    Thermonuclear Type-I X-ray bursts and burst oscillations from the eclipsing AMXP Swift J1749.4-2807

    No full text
    Swift J1749.4-2807 is the only known eclipsing accreting millisecond X-ray pulsar. In this paper, we report on seven thermonuclear (Type-I) X-ray bursts observed by NICER during its 2021 outburst. The first six bursts show slow rises and long decays, indicative of mixed H/He fuel, whereas the last burst shows fast rise and decay, suggesting He-rich fuel. Time-resolved spectroscopy of the bursts revealed typical phenomenology (i.e. an increase in blackbody temperature during the burst rise, and steady decrease in the decay), however, they required a variable NH. We found that the values of NH during the bursts were roughly double those found in the fits of the persistent emission prior to each burst. We interpret this change in absorption as evidence of burst–disc interaction, which we observe due to the high inclination of the system. We searched for burst oscillations during each burst and detected a signal in the first burst at the known spin frequency of the neutron star (517.92 Hz). This is the first time burst oscillations have been detected from Swift J1749.4-2807. We further find that each X-ray burst occurs on top of an elevated persistent count rate. We performed time-resolved spectroscopy on the combined data of the bursts with sufficient statistics (i.e. the clearest examples of this phenomenon) and found that the blackbody parameters evolve to hotter temperatures closer to the onset of the bursts. We interpret this as a consequence of an unusual marginally stable burning process similar to that seen through mHz QPOs

    On the peculiar long-term orbital evolution of the eclipsing accreting millisecond X-ray pulsar SWIFT J1749.4-2807

    Get PDF
    We present the pulsar timing analysis of the accreting millisecond X-ray pulsar SWIFT J1749.4 − 2807 monitored by NICER and XMM–Newton during its latest outburst after almost 11 yr of quiescence. From the coherent timing analysis of the pulse profiles, we updated the orbital ephemerides of the system. Large phase jumps of the fundamental frequency phase of the signal are visible during the outburst, consistent with what was observed during the previous outburst. Moreover, we report on the marginally significant evidence for non-zero eccentricity (e ≃ 4 × 10−5) obtained independently from the analysis of both the 2021 and 2010 outbursts and we discuss possible compatible scenarios. Long-term orbital evolution of SWIFT J1749.4 − 2807 suggests a fast expansion of both the NS projected semimajor axis (x), and the orbital period (Porb), at a rate of x˙≃2.6×10−13lt-ss−1 and P˙orb≃4×10−10ss−1⁠, respectively. SWIFT J1749.4 − 2807 is the only accreting millisecond X-ray pulsar, so far, from which the orbital period derivative has been directly measured from appreciable changes on the observed orbital period. Finally, no significant secular deceleration of the spin frequency of the compact object is detected, which allowed us to set a constraint on the magnetic field strength at the polar caps of BPC < 1.3 × 108 G, in line with typical values reported for AMXPs

    Discovery of thermonuclear Type-I X-ray bursts from the X-ray binary MAXI J1807+132

    No full text
    MAXI J1807+132 is a low-mass X-ray binary (LMXB) first detected in outburst in 2017. Observations during the 2017 outburst did not allow for an unambiguous identification of the nature of the compact object. MAXI J1807+132 was detected in outburst again in 2019 and was monitored regularly with NICER. In this paper we report on five days of observations during which we detected three thermonuclear (Type-I) X-ray bursts, identifying the system as a neutron star LMXB. Time-resolved spectroscopy of the three Type-I bursts revealed typical characteristics expected for these phenomena. All three Type-I bursts show slow rises and long decays, indicative of mixed H/He fuel. We find no strong evidence that any of the Type-I bursts reached the Eddington Luminosity; however, under the assumption that the brightest X-ray burst underwent photospheric radius expansion, we estimate a <12.4kpc upper limit for the distance. We searched for burst oscillations during the Type-I bursts from MAXI J1807+132 and found none (<10% amplitude upper limit at 95% confidence level). Finally, we found that the brightest Type-I burst shows a ~1.6sec pause during the rise. This pause is similar to one recently found with NICER in a bright Type-I burst from the accreting millisecond X-ray pulsar SAX J1808.4-3658. The fact that Type-I bursts from both sources can show this type of pause suggests that the origin of the pauses is independent of the composition of the burning fuel, the peak luminosity of the Type-I bursts, or whether the NS is an X-ray pulsar.Instituto Argentino de RadioastronomĂ­

    Discovery of thermonuclear Type-I X-ray bursts from the X-ray binary MAXI J1807+132

    No full text
    MAXI J1807+132 is a low-mass X-ray binary (LMXB) first detected in outburst in 2017. Observations during the 2017 outburst did not allow for an unambiguous identification of the nature of the compact object. MAXI J1807+132 was detected in outburst again in 2019 and was monitored regularly with NICER. In this paper we report on five days of observations during which we detected three thermonuclear (Type-I) X-ray bursts, identifying the system as a neutron star LMXB. Time-resolved spectroscopy of the three Type-I bursts revealed typical characteristics expected for these phenomena. All three Type-I bursts show slow rises and long decays, indicative of mixed H/He fuel. We find no strong evidence that any of the Type-I bursts reached the Eddington Luminosity; however, under the assumption that the brightest X-ray burst underwent photospheric radius expansion, we estimate

    Outflows and spectral evolution in the eclipsing AMXP SWIFT J1749.4-2807 with NICER, XMM-Newton, and NuSTAR

    Get PDF
    The neutron star low-mass X-ray binary SWIFT J1749.4-2807 is the only known eclipsing accreting millisecond X-ray pulsar. In this manuscript we perform a spectral characterization of the system throughout its 2021, two-week-long outburst, analyzing 11 NICER observations and quasi-simultaneous XMM-Newton and NuSTAR single observations at the outburst peak. The broadband spectrum is well-modeled with a black body component with a temperature of ∌0.6 keV, most likely consistent with a hot spot on the neutron star surface, and a Comptonisation spectrum with power-law index Γ∌1.9, arising from a hot corona at ∌12 keV. No direct emission from the disc was found, possibly due to it being too cool. A high truncation radius for the disc, i.e., at ∌20--30 RG , was obtained from the analysis of the broadened profile of the Fe line in the reflection component. The significant detection of a blue-shifted Fe XXVI absorption line at ∌7 keV indicates weakly relativistic X-ray disc winds, which are typically absent in the hard state of X-ray binaries. By comparing the low flux observed during the outburst and the one expected in a conservative mass-transfer, we conclude that mass-transfer in the system is highly non-conservative, as also suggested by the wind detection. Finally, using the Nicer spectra alone, we followed the system while it was fading to quiescence. During the outburst decay, as the spectral shape hardened, the hot spot on the neutron star surface cooled down and shrank, a trend which could be consistent with the pure power-law spectrum observed during quiescence
    corecore