42 research outputs found

    Characterisation of the genetic diversity of Brucella by multilocus sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Brucella </it>species include economically important zoonotic pathogens that can infect a wide range of animals. There are currently six classically recognised species of <it>Brucella </it>although, as yet unnamed, isolates from various marine mammal species have been reported. In order to investigate genetic relationships within the group and identify potential diagnostic markers we have sequenced multiple genetic loci from a large sample of <it>Brucella </it>isolates representing the known diversity of the genus.</p> <p>Results</p> <p>Nine discrete genomic loci corresponding to 4,396 bp of sequence were examined from 160 <it>Brucella </it>isolates. By assigning each distinct allele at a locus an arbitrary numerical designation the population was found to represent 27 distinct sequence types (STs). Diversity at each locus ranged from 1.03–2.45% while overall genetic diversity equated to 1.5%. Most loci examined represent housekeeping gene loci and, in all but one case, the ratio of non-synonymous to synonymous change was substantially <1. Analysis of linkage equilibrium between loci indicated a strongly clonal overall population structure. Concatenated sequence data were used to construct an unrooted neighbour-joining tree representing the relationships between STs. This shows that four previously characterized classical <it>Brucella </it>species, <it>B. abortus</it>, <it>B. melitensis</it>, <it>B. ovis </it>and <it>B. neotomae </it>correspond to well-separated clusters. With the exception of biovar 5, <it>B. suis </it>isolates cluster together, although they form a more diverse group than other classical species with a number of distinct STs corresponding to the remaining four biovars. <it>B. canis </it>isolates are located on the same branch very closely related to, but distinguishable from, <it>B. suis </it>biovar 3 and 4 isolates. Marine mammal isolates represent a distinct, though rather weakly supported, cluster within which individual STs display one of three clear host preferences.</p> <p>Conclusion</p> <p>The sequence database provides a powerful dataset for addressing ongoing controversies in <it>Brucella </it>taxonomy and a tool for unambiguously placing atypical, phenotypically discordant or newly emerging <it>Brucella </it>isolates. Furthermore, by using the phylogenetic backbone described here, robust and rationally selected markers for use in diagnostic assay development can be identified.</p

    Liposomal delivery of p-ialB and p-omp25 DNA vaccines improves immunogenicity but fails to provide full protection against B. melitensis challenge

    Get PDF
    BACKGROUND: We have previously demonstrated protective efficacy against B. melitensis using formulations of naked DNA vaccines encoding genes ialB and omp25. The present study was undertaken to further understand the immune response generated by the protective vaccination regimens and to evaluate cationic liposome adsorption as a delivery method to improve vaccine utility. METHODS: The protective efficacy and immunogenicity of vaccines delivered as four doses of naked DNA, a single dose of naked DNA or a single dose of DNA surface adsorbed to cationic liposomes were compared using the BALB/c murine infection model of B. melitensis. Antigen-specific T cells and antibody responses were compared between the various formulations. RESULTS: The four dose vaccination strategy was confirmed to be protective against B. melitensis challenge. The immune response elicited by the various vaccines was found to be dependent upon both the antigen and the delivery strategy, with the IalB antigen favouring CD4+ T cell priming and Omp25 antigen favouring CD8+. Delivery of the p-ialB construct as a lipoplex improved antibody generation in comparison to the equivalent quantity of naked DNA. Delivery of p-omp25 as a lipoplex altered the profile of responsive T cells from CD8+ to CD4+ dominated. Under these conditions neither candidate delivered by single dose naked DNA or lipoplex vaccination methods was able to produce a robust protective effect. CONCLUSIONS: Delivery of the p-omp25 and p-ialB DNA vaccine candidates as a lipoplex was able to enhance antibody production and effect CD4+ T cell priming, but was insufficient to promote protection from a single dose of either vaccine. The enhancement of immunogenicity by lipoplex delivery is a promising step toward improving the practicality of these two candidate vaccines, and suggests that this lipoplex formulation may be of value in situations where improvements to CD4+ responses are required. However, in the case of Brucella vaccine development it is suggested that further modifications to the candidate vaccines and delivery strategies will be required in order to deliver sustained protection

    Senolytic treatment preserves biliary regenerative capacity lost through cellular senescence during cold storage

    Get PDF
    Liver transplantation is the only curative option for patients with end-stage liver disease. Despite improvements in surgical techniques, nonanastomotic strictures (characterized by the progressive loss of biliary tract architecture) continue to occur after liver transplantation, negatively affecting liver function and frequently leading to graft loss and retransplantation. To study the biological effects of organ preservation before liver transplantation, we generated murine models that recapitulate liver procurement and static cold storage. In these models, we explored the response of cholangiocytes and hepatocytes to cold storage, focusing on responses that affect liver regeneration, including DNA damage, apoptosis, and cellular senescence. We show that biliary senescence was induced during organ retrieval and exacerbated during static cold storage, resulting in impaired biliary regeneration. We identified decoy receptor 2 (DCR2)–dependent responses in cholangiocytes and hepatocytes, which differentially affected the outcome of those populations during cold storage. Moreover, CRISPR-mediated DCR2 knockdown in vitro increased cholangiocyte proliferation and decreased cellular senescence but had the opposite effect in hepatocytes. Using the p21KO model to inhibit senescence onset, we showed that biliary tract architecture was better preserved during cold storage. Similar results were achieved by administering senolytic ABT737 to mice before procurement. Last, we perfused senolytics into discarded human donor livers and showed that biliary architecture and regenerative capacities were better preserved. Our results indicate that cholangiocytes are susceptible to senescence and identify the use of senolytics and the combination of senotherapies and machine-perfusion preservation to prevent this phenotype and reduce the incidence of biliary injury after transplantation.This work was supported by the UK Medical Research MRC (MR/K017047/1) (to S.J.F.), the Computational and Chemical Biology of Stem Cell Niche (MR/L012766/1) (to S.J.F.), the UK Regenerative Medicine Platform (MR/K026666/1) (to S.J.F.), and the Wellcome Trust Institutional Translational Partnership Award (WT iTPA) (to S.F.-G.). J.M.B. was supported by the Spanish Carlos III Health Institute (ISCIII) (PI15/01132, PI18/01075, and Miguel Servet Program CON14/00129 and CPII19/00008) cofinanced by “Fondo Europeo de Desarrollo Regional” (FEDER); “Instituto de Salud Carlos III” (CIBERehd), Spain; “Euskadi RIS3” (2019222054 and 2020333010); and the Department of Industry of the Basque Country (Elkartek: KK-2020/00008). This research was funded in whole or in part by The Wellcome Trust (grant number 209710/Z/17/Z), a cOAlition S organization

    Quantifying Risk Factors for Human Brucellosis in Rural Northern Tanzania

    Get PDF
    Brucellosis is a zoonosis of veterinary, public health and economic significance in most developing countries. Human brucellosis is a severely debilitating disease that requires prolonged treatment with a combination of antibiotics. The disease can result in permanent and disabling sequel, and results in considerable medical expenses in addition to loss of income due to loss of working hours. A study was conducted in Northern Tanzania to determine the risk factors for transmission of brucellosis to humans in Tanzania. This was a matched case-control study. Any patient with a positive result by a competitive ELISA (c-ELISA) test for brucellosis, and presenting to selected hospitals with at least two clinical features suggestive of brucellosis such as headache, recurrent or continuous fever, sweating, joint pain, joint swelling, general body malaise or backache, was defined as a case. For every case in a district, a corresponding control was traced and matched by sex using multistage cluster sampling. Other criteria for inclusion as a control included a negative c-ELISA test result and that the matched individual would present to hospital if falls sick. Multivariable analysis showed that brucellosis was associated with assisted parturition during abortion in cattle, sheep or goat. It was shown that individuals living in close proximity to other households had a higher risk of brucellosis. People who were of Christian religion were found to have a higher risk of brucellosis compared to other religions. The study concludes that assisting an aborting animal, proximity to neighborhoods, and Christianity were associated with brucellosis infection. There was no association between human brucellosis and Human Immunodeficiency Virus (HIV) serostatus. Protecting humans against contact with fluids and tissues during assisted parturition of livestock may be an important means of reducing the risk of transferring brucellosis from livestock to humans. These can be achieved through health education to the communities where brucellosis is common

    Health-seeking behaviour of human brucellosis cases in rural Tanzania

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brucellosis is known to cause debilitating conditions if not promptly treated. In some rural areas of Tanzania however, practitioners give evidence of seeing brucellosis cases with symptoms of long duration. The purpose of this study was to establish health-seeking behaviour of human brucellosis cases in rural Tanzania and explore the most feasible ways to improve it.</p> <p>Methods</p> <p>This was designed as a longitudinal study. Socio-demographic, clinical and laboratory data were collected from patients who reported to selected hospitals in rural northern Tanzania between June 2002 and April 2003. All patients with conditions suspicious of brucellosis on the basis of preliminary clinical examination and history were enrolled into the study as brucellosis suspects. Blood samples were taken and tested for brucellosis using the Rose-Bengal Plate Test (RBPT) and other agglutination tests available at the health facilities and the competitive ELISA (c-ELISA) test at the Veterinary Laboratory Agencies (VLA) in the UK. All suspects who tested positive with the c-ELISA test were regarded as brucellosis cases. A follow-up of 49 cases was made to collect data on health-seeking behaviour of human brucellosis cases.</p> <p>Results</p> <p>The majority of cases 87.7% gave a history of going to hospital as the first point of care, 10.2% purchased drugs from a nearby drug shop before going to hospital and 2% went to a local traditional healer first. Brucellosis cases delayed going to hospital with a median delay time of 90 days, and with 20% of the cases presenting to hospitals more than a year after the onset of symptoms. Distance to the hospital, keeping animals and knowledge of brucellosis were significantly associated with patient delay to present to hospital.</p> <p>Conclusion</p> <p>More efforts need to be put on improving the accessibility of health facilities to the rural poor people who succumb to most of the diseases including zoonoses. Health education on brucellosis in Tanzania should also stress the importance of early presentation to hospitals for prompt treatment.</p

    Generation of the Brucella melitensis ORFeome version 1.1.

    Get PDF
    The bacteria of the Brucella genus are responsible for a worldwide zoonosis called brucellosis. They belong to the alpha-proteobacteria group, as many other bacteria that live in close association with a eukaryotic host. Importantly, the Brucellae are mainly intracellular pathogens, and the molecular mechanisms of their virulence are still poorly understood. Using the complete genome sequence of Brucella melitensis, we generated a database of protein-coding open reading frames (ORFs) and constructed an ORFeome library of 3091 Gateway Entry clones, each containing a defined ORF. This first version of the Brucella ORFeome (v1.1) provides the coding sequences in a user-friendly format amenable to high-throughput functional genomic and proteomic experiments, as the ORFs are conveniently transferable from the Entry clones to various Expression vectors by recombinational cloning. The cloning of the Brucella ORFeome v1.1 should help to provide a better understanding of the molecular mechanisms of virulence, including the identification of bacterial protein-protein interactions, but also interactions between bacterial effectors and their host's targets

    Scoping potential routes to UK civil unrest via the food system: Results of a structured expert elicitation

    Get PDF
    We report the results of a structured expert elicitation to identify the most likely typesof potential food system disruption scenarios for the UK, focusing on routes to civil unrest. Wetake a backcasting approach by defining as an end-point a societal event in which 1 in 2000 peoplehave been injured in the UK, which 40% of experts rated as “Possible (20–50%)”, “More likely thannot (50–80%)” or “Very likely (>80%)” over the coming decade. Over a timeframe of 50 years, thisincreased to 80% of experts. The experts considered two food system scenarios and ranked theirplausibility of contributing to the given societal scenario. For a timescale of 10 years, the majorityidentified a food distribution problem as the most likely. Over a timescale of 50 years, the expertswere more evenly split between the two scenarios, but over half thought the most likely route tocivil unrest would be a lack of total food in the UK. However, the experts stressed that the variouscauses of food system disruption are interconnected and can create cascading risks, highlighting theimportance of a systems approach. We encourage food system stakeholders to use these results intheir risk planning and recommend future work to support prevention, preparedness, response andrecovery planning

    From Democratic Peace to Democratic Distinctiveness: A Critique of Democratic Exceptionalism in Peace and Conflict Studies

    Full text link

    The Bovine Immune Response Following Brucella Vaccination and Infection and the Development of a Discriminatory Test.

    No full text
    Brucella abortus strain 19 vaccine (S19) is used throughout the world to protect cattle from brucellosis. If used widely in a population it is extremely effective in rapidly reducing the prevalence of the disease. It suffers from a major disadvantage as vaccination stimulates an immune response indistinguishable, using classical tests, from that following infection with a virulent field strain of B. abortus. Consequently, veterinary authorities are inhibited from using it for fear of confusing the diagnosis of field infection. Groups of animals were vaccinated with S19 and infected with a virulent strain to mimic the field situation. Both groups of animals responded as expected, but they could not be distinguished using classical tests or by ELISA using anti-isotype reagents. A difference was observed in the normalised ELISA result when the animals were tested using lipopolysaccharide (LPS) antigens coated at different concentrations. This phenomenon was investigated further and a significant difference between the ELISA reactions of serum from vaccinated and infected animals was confirmed. This difference in binding could not be attributed to a difference in the avidity of antibodies arising following vaccination and infection. A significant difference in the binding of monoclonal antibodies to high and low concentration antigens (conventional and modified ELISA) provided strong evidence that some O-polysaccharide epitopes were becoming obscured or their conformation was changing when the LPS was coated at a low concentration. Validation of the modified ELISA in field trials showed that the test had an excellent diagnostic sensitivity and specificity when used in non-vaccinated animals. In animals sampled immediately following vaccination with S19, using a different cut-off, the diagnostic sensitivity and specificity were still good. The modified ELISA is suitable for diagnosis world-wide where S19 vaccination is used in a controlled or an indiscriminate manner
    corecore