3,013 research outputs found

    The Geoscience Laser Altimeter System (GLAS) Laser Transmitter

    Get PDF
    The Geoscience Laser Altimeter System (GLAS), launched in January 2003, is a laser altimeter and lidar for the Earth Observing System's (EOS) ICESat mission. GLAS accommodates three, sequentially operated, diode-pumped, solid-state, Nd:YAG laser transmitters. The laser transmitter requirements, design and qualification test results for this space-based remote sensing instrument is summarized and presente

    Signals for Lorentz Violation in Post-Newtonian Gravity

    Get PDF
    The pure-gravity sector of the minimal Standard-Model Extension is studied in the limit of Riemann spacetime. A method is developed to extract the modified Einstein field equations in the limit of small metric fluctuations about the Minkowski vacuum, while allowing for the dynamics of the 20 independent coefficients for Lorentz violation. The linearized effective equations are solved to obtain the post-newtonian metric. The corresponding post-newtonian behavior of a perfect fluid is studied and applied to the gravitating many-body system. Illustrative examples of the methodology are provided using bumblebee models. The implications of the general theoretical results are studied for a variety of existing and proposed gravitational experiments, including lunar and satellite laser ranging, laboratory experiments with gravimeters and torsion pendula, measurements of the spin precession of orbiting gyroscopes, timing studies of signals from binary pulsars, and the classic tests involving the perihelion precession and the time delay of light. For each type of experiment considered, estimates of the attainable sensitivities are provided. Numerous effects of local Lorentz violation can be studied in existing or near-future experiments at sensitivities ranging from parts in 10^4 down to parts in 10^{15}.Comment: 46 pages two-column REVTeX, accepted in Physical Review

    A genetically modified adenoviral vector with a phage display-derived peptide incorporated into fiber fibritin chimera prolongs survival in experimental glioma

    Get PDF
    The dismal clinical context of advanced-grade glioma demands the development of novel therapeutic strategies with direct patient impact. Adenovirus-mediated virotherapy represents a potentially effective approach for glioma therapy. In this research, we generated a novel glioma-specific adenovirus by instituting more advanced genetic modifications that can maximize the efficiency and safety of therapeutic adenoviral vectors. In this regard, a glioma-specific targeted fiber was developed through the incorporation of previously published glioma-specific, phage-panned peptide (VWT peptide) on a fiber fibritin-based chimeric fiber, designated as “GliomaFF.” We showed that the entry of this virus was highly restricted to glioma cells, supporting the specificity imparted by the phage-panned peptide. In addition, the stability of the targeting moiety presented by fiber fibritin structure permitted greatly enhanced infectivity. Furthermore, the replication of this virus was restricted in glioma cells by controlling expression of the E1 gene under the activity of the tumor-specific survivin promoter. Using this approach, we were able to explore the combinatorial efficacy of various adenoviral modifications that could amplify the specificity, infectivity, and exclusive replication of this therapeutic adenovirus in glioma. Finally, virotherapy with this modified virus resulted in up to 70% extended survival in an in vivo murine glioma model. These data demonstrate that this novel adenoviral vector is a safe and efficient treatment for this difficult malignancy

    Multi-Grid Monte Carlo via XYXY Embedding. II. Two-Dimensional SU(3)SU(3) Principal Chiral Model

    Get PDF
    We carry out a high-precision simulation of the two-dimensional SU(3)SU(3) principal chiral model at correlation lengths ξ\xi up to 4×105\sim 4 \times 10^5, using a multi-grid Monte Carlo (MGMC) algorithm and approximately one year of Cray C-90 CPU time. We extrapolate the finite-volume Monte Carlo data to infinite volume using finite-size-scaling theory, and we discuss carefully the systematic and statistical errors in this extrapolation. We then compare the extrapolated data to the renormalization-group predictions. The deviation from asymptotic scaling, which is 12\approx 12% at ξ25\xi \sim 25, decreases to 2\approx 2% at ξ4×105\xi \sim 4 \times 10^5. We also analyze the dynamic critical behavior of the MGMC algorithm using lattices up to 256×256256 \times 256, finding the dynamic critical exponent zint,M20.45±0.02z_{int,{\cal M}^2} \approx 0.45 \pm 0.02 (subjective 68% confidence interval). Thus, for this asymptotically free model, critical slowing-down is greatly reduced compared to local algorithms, but not completely eliminated.Comment: self-unpacking archive including .tex, .sty and .ps files; 126 pages including all figure

    CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells

    Get PDF
    In many aggressive cancers, such as glioblastoma multiforme (GBM), progression is enabled by local immunosuppression driven by the accumulation of regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC). However, the mechanistic details of how Treg and MDSC are recruited in various tumors is not yet well understood. Here we report that macrophages and microglia within the glioma microenvironment produce CCL2, a chemokine that is critical for recruiting both CCR4+ Treg and CCR2+Ly-6C+ monocytic MDSC in this disease setting. In murine gliomas, we established novel roles for tumor-derived CCL20 and osteoprotegerin in inducing CCL2 production from macrophages and microglia. Tumors grown in CCL2 deficient mice failed to maximally accrue Treg and monocytic MDSC. In mixed-bone marrow chimera assays, we found that CCR4-deficient Treg and CCR2-deficient monocytic MDSC were defective in glioma accumulation. Further, administration of a small molecule antagonist of CCR4 improved median survival in the model. In clinical specimens of GBM, elevated levels of CCL2 expression correlated with reduced overall survival of patients. Lastly, we found that CD163-positive infiltrating macrophages were a major source of CCL2 in GBM patients. Collectively, our findings show how glioma cells influence the tumor microenvironment to recruit potent effectors of immunosuppression that drive progression

    Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression.

    Get PDF
    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane regulator (CFTR) that result in reduced anion conductance at the apical membrane of secretory epithelia. Treatment of CF patients carrying the G551D gating mutation with the potentiator VX-770 (ivacaftor) largely restores channel activity and has shown substantial clinical benefit. However, most CF patients carry the ΔF508 mutation, which impairs CFTR folding, processing, function, and stability. Studies in homozygous ΔF508 CF patients indicated little clinical benefit of monotherapy with the investigational corrector VX-809 (lumacaftor) or VX-770, whereas combination clinical trials show limited but significant improvements in lung function. We show that VX-770, as well as most other potentiators, reduces the correction efficacy of VX-809 and another investigational corrector, VX-661. To mimic the administration of VX-770 alone or in combination with VX-809, we examined its long-term effect in immortalized and primary human respiratory epithelia. VX-770 diminished the folding efficiency and the metabolic stability of ΔF508-CFTR at the endoplasmic reticulum (ER) and post-ER compartments, respectively, causing reduced cell surface ΔF508-CFTR density and function. VX-770-induced destabilization of ΔF508-CFTR was influenced by second-site suppressor mutations of the folding defect and was prevented by stabilization of the nucleotide-binding domain 1 (NBD1)-NBD2 interface. The reduced correction efficiency of ΔF508-CFTR, as well as of two other processing mutations in the presence of VX-770, suggests the need for further optimization of potentiators to maximize the clinical benefit of corrector-potentiator combination therapy in CF

    Impact of pre-transplant time on dialysis on survival in patients with lupus nephritis

    Get PDF
    Lupus nephritis (LN) is an important cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE) often leading to end-stage renal failure (ESRF) and necessitating renal transplantation (rTp). Optimal timing of rTp in SLE patients with ESRF is uncertain and could potentially affect survival. We investigated the time spent on dialysis before rTp and survival following rTp in a cohort of SLE patients. Retrospective analysis of all adult SLE patients receiving rTp over a 40-year period (1975–2015) in two tertiary UK centres. Cox proportional hazard regression and receiver operator curves (ROC) were used to determine the risk associated with time on dialysis before rTp and other potential predictors. Forty patients (age 35 ± 11 years, 34 female, 15 Caucasian, 15 Afro–Caribbean and 10 South Asian) underwent rTp. During a median follow-up of 104 months (IQR 80,145), eight (20%) patients died and the 5-year survival was 95%. Univariate analysis identified time on dialysis prior to rTp as the only potentially modifiable risk predictor of survival with a hazard ratio of 1.013 for each additional month spent on dialysis (95% CI = 1.001–1.026, p = 0.03). ROC curves demonstrated that > 24 months on dialysis had an adverse effect with sensitivity of 0.875 and specificity 0.500 for death. No other modifiable predictors were significantly associated with mortality, indicating that time on dialysis had an independent effect. Increased time on dialysis pre-transplantation is an independent modifiable risk factor of mortality in this cohort of patients with lupus nephritis
    corecore