99 research outputs found

    Effect of behaviour on evolutionary mechanisms in Gallinaceous birds

    Get PDF

    Temporal variation in bird assemblages: how representative is a one-year snapshot?

    Get PDF
    Bird assemblages generally are no longer regarded as stable entities, but rather as fluctuating in response to many factors. Australiaā€™s highly variable climate is likely to result in a high degree of dynamism in its bird assemblages, yet few studies have investigated variation on an inter-annual temporal scale. We compared two year-long samples of the bird assemblages of a series of highly fragmented buloke Allocasuarina luehmannii (Casuarinaceae)woodland remnants in south-eastern Australia, the first sample taken in 1994ā€“1995 and the second in 2001ā€“2002. Bird densities were almost three times higher in the second period than in the first. Mean species richness also was significantly higher. Species richness of each individual site was unrelated between the two years. Minimum species turnover was 63% and was higher, on average, for migratory and nomadic than for sedentary species. Therefore, site-level bird assemblage composition was markedly different between the two survey periods and, on average, the assemblage composition of each site bore greater resemblance to those of other sites in the same year than to that of the same site in the other survey period. Most species changed substantially in their distribution among remnants between the two periods. The change in distribution of most species did not differ significantly from that expected if the species had redistributed at random among the sites. This suggests that although the remnant vegetation of the area is highly fragmented with minimal interpatch connectivity, bird movements among remnants must be relatively frequent. Interannual variability in Australian bird assemblages may be higher than is commonly recognized. In such dynamic systems, we must be cautious when extrapolating from the findings of short-term studies to longer temporal scales, especially in relation to conservation management. A greater understanding of the processes driving distributional patterns is likely to enable better predictions of speciesā€™ responses to habitat change

    Tolerance of disturbance by humans in long-time resident and recent colonist urban doves

    Get PDF
    BACKGROUND: A critical trait for successful urban dwelling by birds is the ability to tolerate high levels of disturbing stimulation by humans. If such tolerance is partly acquired gradually after colonization, species with a long history of residence in cities are likely to be more tolerant of such stimulation than recent urban colonists, but this has not often been tested. METHODS: We tested whether introduced Rock (Columba livia) and Spotted (Streptopelis chinensis) Doves, historically long-term residents of Melbourne, Australia, were more tolerant of disturbance by humans than the very recent colonist, the native Crested Pigeon (Ochyphaps lophotes) by comparing the Flight Initiation Distances (FID) and time allocations to vigilance during foraging of all three species in urban Melbourne. That all three species are members of the Columbiformes reduces the possibility that any species differences in tolerance are simply phylogenetic in origin. RESULTS: Flight initiation distance was shorter in Rock Doves than in the other two species, which did not differ in approachability by a human. Rock Doves retreated from an approaching human mainly by walking a relatively short distance, Crested Pigeons mainly by running a relatively short distance and Spotted Doves primarily by flying a comparatively long distance. The time allocation to anti-predator vigilance of Rock Doves was smaller than that of the other two species, whose allocations were similar. CONCLUSIONS: The very recent colonist of eastern Melbourne, the Crested Pigeon, was not the least tolerant of disturbance by humans of the three related species. Natural selection for tolerance therefore probably cannot entirely explain the pattern of tolerance evident among these urban dove species and behavioural flexibility is probably involved. Length of residency in a city is not an infallible guide to a speciesā€™ level of tolerance of disturbance by humans

    Response of the Agile Antechinus to Habitat Edge, Configuration and Condition in Fragmented Forest

    Get PDF
    Habitat fragmentation and degradation seriously threaten native animal communities. We studied the response of a small marsupial, the agile antechinus Antechinus agilis, to several environmental variables in anthropogenically fragmented Eucalyptus forest in south-east Australia. Agile antechinus were captured more in microhabitats dominated by woody debris than in other microhabitats. Relative abundances of both sexes were positively correlated with fragment core area. Male and female mass-size residuals were smaller in larger fragments. A health status indicator, haemoglobin-haematocrit residuals (HHR), did not vary as a function of any environmental variable in females, but male HHR indicated better health where sites' microhabitats were dominated by shrubs, woody debris and trees other than Eucalyptus. Females were trapped less often in edge than interior fragment habitat and their physiological stress level, indicated by the neutrophil/lymphocyte ratio in peripheral blood, was higher where fragments had a greater proportion of edge habitat. The latter trend was potentially due to lymphopoenia resulting from stress hormone-mediated leukocyte trafficking. Using multiple indicators of population condition and health status facilitates a comprehensive examination of the effects of anthropogenic disturbances, such as habitat fragmentation and degradation, on native vertebrates. Male agile antechinus' health responded negatively to habitat degradation, whilst females responded negatively to the proportion of edge habitat. The health and condition indicators used could be employed to identify conservation strategies that would make habitat fragments less stressful for this or similar native, small mammals

    A novel de novo dominant mutation in ISCU associated with mitochondrial myopathy

    Get PDF
    BACKGROUND: Hereditary myopathy with lactic acidosis and myopathy with deficiency of succinate dehydrogenase and aconitase are variants of a recessive disorder characterised by childhood-onset early fatigue, dyspnoea and palpitations on trivial exercise. The disease is non-progressive, but life-threatening episodes of widespread weakness, metabolic acidosis and rhabdomyolysis may occur. So far, this disease has been molecularly defined only in Swedish patients, all homozygous for a deep intronic splicing affecting mutation in ISCU encoding a scaffold protein for the assembly of iron-sulfur (Fe-S) clusters. A single Scandinavian family was identified with a different mutation, a missense change in compound heterozygosity with the common intronic mutation. The aim of the study was to identify the genetic defect in our proband. METHODS: A next-generation sequencing (NGS) approach was carried out on an Italian male who presented in childhood with ptosis, severe muscle weakness and exercise intolerance. His disease was slowly progressive, with partial recovery between episodes. Patient's specimens and yeast models were investigated. RESULTS: Histochemical and biochemical analyses on muscle biopsy showed multiple defects affecting mitochondrial respiratory chain complexes. We identified a single heterozygous mutation p.Gly96Val in ISCU, which was absent in DNA from his parents indicating a possible de novo dominant effect in the patient. Patient fibroblasts showed normal levels of ISCU protein and a few variably affected Fe-S cluster-dependent enzymes. Yeast studies confirmed both pathogenicity and dominance of the identified missense mutation. CONCLUSION: We describe the first heterozygous dominant mutation in ISCU which results in a phenotype reminiscent of the recessive disease previously reported.This work was supported by the TelethonItaly [GrantGGP15041]; the Pierfranco and Luisa Mariani Foundation; the MRC7QQR [201572020] grant; the ERC advanced grant [FP77322424]; the NRJ Foundation7Institut de France; the E7Rare project GENOMIT. RL acknowledges generous financial support from Deutsche Forschungsgemeinschaft [SFB 987 and SPP 1927] and the LOEWE program of state Hessen

    How Noisy Does a Noisy Miner Have to Be? Amplitude Adjustments of Alarm Calls in an Avian Urban ā€˜Adapterā€™

    Get PDF
    Background: Urban environments generate constant loud noise, which creates a formidable challenge for many animals relying on acoustic communication. Some birds make vocal adjustments that reduce auditory masking by altering, for example, the frequency (kHz) or timing of vocalizations. Another adjustment, well documented for birds under laboratory and natural field conditions, is a noise level-dependent change in sound signal amplitude (the ā€˜Lombard effectā€™). To date, however, field research on amplitude adjustments in urban environments has focused exclusively on bird song. Methods: We investigated amplitude regulation of alarm calls using, as our model, a successful urban ā€˜adapter ā€™ species, the Noisy miner, Manorina melanocephala. We compared several different alarm calls under contrasting noise conditions. Results: Individuals at noisier locations (arterial roads) alarm called significantly more loudly than those at quieter locations (residential streets). Other mechanisms known to improve sound signal transmission in ā€˜noiseā€™, namely use of higher perches and in-flight calling, did not differ between site types. Intriguingly, the observed preferential use of different alarm calls by Noisy miners inhabiting arterial roads and residential streets was unlikely to have constituted a vocal modification made in response to sound-masking in the urban environment because the calls involved fell within the main frequency range of background anthropogenic noise. Conclusions: The results of our study suggest that a species, which has the ability to adjust the amplitude of its signals

    Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

    Get PDF
    Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan.Variability in human longevity is genetically influenced. Using genetic data of parental lifespan, the authors identify associations at HLA-DQA/DRB1 and LPA and find that genetic variants that increase educational attainment have a positive effect on lifespan whereas increasing BMI negatively affects lifespan

    <em>MAPTĀ  </em>expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies

    Get PDF
    The MAPT (microtubule-associated protein tau) locus is one of the most remarkable in neurogenetics due not only to its involvement in multiple neurodegenerative disorders, including progressive supranuclear palsy, corticobasal degeneration, Parksinson's disease and possibly Alzheimer's disease, but also due its genetic evolution and complex alternative splicing features which are, to some extent, linked and so all the more intriguing. Therefore, obtaining robust information regarding the expression, splicing and genetic regulation of this gene within the human brain is of immense importance. In this study, we used 2011 brain samples originating from 439 individuals to provide the most reliable and coherent information on the regional expression, splicing and regulation of MAPT available to date. We found significant regional variation in mRNA expression and splicing of MAPT within the human brain. Furthermore, at the gene level, the regional distribution of mRNA expression and total tau protein expression levels were largely in agreement, appearing to be highly correlated. Finally and most importantly, we show that while the reported H1/H2 association with gene level expression is likely to be due to a technical artefact, this polymorphism is associated with the expression of exon 3-containing isoforms in human brain. These findings would suggest that contrary to the prevailing view, genetic risk factors for neurodegenerative diseases at the MAPT locus are likely to operate by changing mRNA splicing in different brain regions, as opposed to the overall expression of the MAPT gene

    Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

    Get PDF
    Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan.Variability in human longevity is genetically influenced. Using genetic data of parental lifespan, the authors identify associations at HLA-DQA/DRB1 and LPA and find that genetic variants that increase educational attainment have a positive effect on lifespan whereas increasing BMI negatively affects lifespan

    Food Resources and Urban Colonisation by Lorikeets and Parrots

    No full text
    Volume: 126Start Page: 70End Page: 7
    • ā€¦
    corecore