29 research outputs found

    Petrography and geochemistry of granitoids and related rocks from the pre-Neogene basement of the Slavonia-Srijem Depression (Croatia)

    Get PDF
    The pre-Neogene basement of the Slavonia-Srijem Depression (eastern Croatia) is composed of various types of igneous, metamorphic and sedimentary rocks. Here we present the petrography and geochemistry of a heterogenous group represented by two types of alkali granite, granite, syenite, rhyolite and orthogneiss. The alkali granite type 1 has an A-type geochemical affinity: a ferroan character, high alkali content, high concentration of rare earth elements (REE3+), Rb, Zr, Nb and Y, and low CaO, MgO, P2O5, Ba, Sr and Eu contents. The syenite has similar characteristics, but displays enrichment in Ba, K, Eu and Zr, which could be a consequence of feldspar and zircon accumulation. The alkali granite type 2 is an A-type granite but differs from the alkali granite type 1 in having lower K2O and Rb, accompanied by higher Na2O and Sr concentrations, possibly resulting from alteration or a different parental magma/evolutionary process. The granite and rhyolite are distinguished from both types of alkali granite by their magnesian character, lower Zr, Nb and Y concentrations, less pronounced Eu negative anomaly, as well as higher Ba, Sr and LREE/HREE. The orthogneiss displays differences in major element chemistry compared to the alkali granite type 1, but has similar trace element and REE patterns. The alkali granites are characterized by Y/Nb<1.2, indicating an ocean island basalt-like source, while the granite originated from melting of a crustal, probably metasedimentary source. The A-type granites could belong to the Late Cretaceous A-type magmatism of the Sava Zone, while the granite is significantly different from the Sava Zone A-type granites as well as the other rocks investigated in this study

    The Role of Water in the Stability of Cratonic Keels

    Get PDF
    Cratons are typically underlain by large, deep, and old lithospheric keels (to greater than 200 km depth, greater than 2.5 Ga old) projecting into the asthenosphere (e.g., Jordan, 1978; Richardson et al., 1984). This has mystified Earth scientists as the dynamic and relatively hot asthenosphere should have eroded away these keels over time (e.g., Sleep, 2003; O'Neill et al., 2008; Karato, 2010). Three key factors have been invoked to explain cratonic root survival: 1) Low density makes the cratonic mantle buoyant (e.g., Poudjom Djomani et al., 2001). 2) Low temperatures (e.g., Pollack, 1986; Boyd, 1987), and 3) low water contents (e.g., Pollack, 1986), would make cratonic roots mechanically strong. Here we address the mechanism of the longevity of continental mantle lithosphere by focusing on the water parameter. Although nominally anhydrous , olivine, pyroxene and garnet can accommodate trace amounts of water in the form of H bonded to structural O in mineral defects (e.g., Bell and Rossman, 1992). Olivine softens by orders of magnitude if water (1-1000 ppm H2O) is added to its structure (e.g., Mackwell et al., 1985). Our recent work has placed constraints on the distribution of water measured in peridotite minerals in the cratonic root beneath the Kaapvaal in southern Africa (Peslier et al., 2010). At P greater than 5 GPa, the water contents of pyroxene remain relatively constant while those of olivine systematically decrease from 50 to less than 10 ppm H2O at 6.4 GPa. We hypothesized that at P greater than 6.4 GPa, i.e. at the bottom of the cratonic lithosphere, olivines are essentially dry (greater than 10 ppm H2O). As olivine likely controls the rheology of the mantle, we calculated that the dry olivines could be responsible for a contrast in viscosity between cratonic lithosphere and surrounding asthenosphere large enough to explain the resistance of cratonic root to asthenospheric delamination

    Variation in sub-arc mantle oxygen fugacity during partial melting recorded in refractory peridotite xenoliths from the West Bismarck Arc

    Get PDF
    This work was funded bygrants (DP120104240 and DE120100513) to Richard J Arculus andOliver Nebel from the Australian Research Council

    Water Content of Earth's Continental Mantle Is Controlled by the Circulation of Fluids or Melts

    Get PDF
    A key mission of the ARES Directorate at JSC is to constrain models of the formation and geological history of terrestrial planets. Water is a crucial parameter to be measured with the aim to determine its amount and distribution in the interior of Earth, Mars, and the Moon. Most of that "water" is not liquid water per se, but rather hydrogen dissolved as a trace element in the minerals of the rocks at depth. Even so, the middle layer of differentiated planets, the mantle, occupies such a large volume and mass of each planet that when it is added at the planetary scale, oceans worth of water could be stored in its interior. The mantle is where magmas originate. Moreover, on Earth, the mantle is where the boundary between tectonic plates and the underlying asthenosphere is located. Even if mantle rocks in Earth typically contain less than 200 ppm H2O, such small quantities have tremendous influence on how easily they melt (i.e., the more water there is, the more magma is produced) and deform (the more water there is, the less viscous they are). These two properties alone emphasize that to understand the distribution of volcanism and the mechanism of plate tectonics, the water content of the mantle must be determined - Earth being a template to which all other terrestrial planets can be compared

    Metasomatic Control of Water in Garnet and Pyroxene from Kaapvaal Craton Mantle Xenoliths

    Get PDF
    Fourier transform infrared spectrometry (FTIR) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) were used to determine water, rare earth (REE), lithophile (LILE), and high field strength (HFSE) element contents in garnet and pyroxene from mantle xenoliths, Kaapvaal craton, southern Africa. Water enters these nominally anhydrous minerals as protons bonded to structural oxygen in lattice defects. Pyroxene water contents (150-400 ppm in clinopyroxene; 40-250 ppm in orthopyroxene) correlate with their Al, Fe, Ca and Na and are homogeneous within a mineral grains and a xenolith. Garnets from Jagersfontein are chemically zoned for Cr, Ca, Ti and water contents. Garnets contain 0 to 20 ppm H2 Despite the fast diffusion rate of H in mantle m inerals, the observations above indicate that the water contents of mantle xenolith minerals were not disturbed during kimberlite entrainment and that the measured water data represent mantle values. Trace elements in all minerals show various degrees of light REE and LILE enrichments indicative of minimal to strong metasomatism. Water contents of peridotite minerals from the Kaapvaal lithosphere are not related to the degree of depletion of the peridotites. Instead, metasomatism exerts a clear control on the amount of water of mantle minerals. Xenoliths from each location record specific types of metasomatism with different outcomes for the water contents of mantle minerals. At pressures . 5.5 GPa, highly alkaline melts metasomatized Liqhobong and Kimberley peridotites, and increased the water contents of their olivine, pyroxenes and garnet. At higher pressures, the circulation of ultramafic melts reacting with peridotite resulted in co-variation of Ca, Ti and water at the edge of garnets at Jagersfontein, overall decreasing their water content, and lowered the water content of olivines at Finsch Mine. The calculated water content of these melts varies depending on whether the water content of the peridotite (2 wt% HO. 2O) or individual m inerals (<0.5-13 wt% H2O) are used, and also depend on the mineral-melt water partition coefficients. These metasomatic events are thought to have occurred during the Archean and Proterozoic, meaning that the water contents measured here have been preserved since that time and can be used to investigate viscocity and longevity of cratonic mantle roots

    Dengue Virus Infection and Virus-Specific HLA-A2 Restricted Immune Responses in Humanized NOD-scid IL2rγnull Mice

    Get PDF
    BACKGROUND:The lack of a suitable animal model to study viral and immunological mechanisms of human dengue disease has been a deterrent to dengue research. METHODOLOGY/PRINCIPAL FINDINGS:We sought to establish an animal model for dengue virus (DENV) infection and immunity using non-obese diabetic/severe combined immunodeficiency interleukin-2 receptor gamma-chain knockout (NOD-scid IL2rgamma(null)) mice engrafted with human hematopoietic stem cells. Human CD45(+) cells in the bone marrow of engrafted mice were susceptible to in vitro infection using low passage clinical and established strains of DENV. Engrafted mice were infected with DENV type 2 by different routes and at multiple time points post infection, we detected DENV antigen and RNA in the sera, bone marrow, spleen and liver of infected engrafted mice. Anti-dengue IgM antibodies directed against the envelope protein of DENV peaked in the sera of mice at 1 week post infection. Human T cells that developed following engraftment of HLA-A2 transgenic NOD-scid IL2rgamma(null) mice with HLA-A2(+) human cord blood hematopoietic stem cells, were able to secrete IFN-gamma, IL-2 and TNF-alpha in response to stimulation with three previously identified A2 restricted dengue peptides NS4b 2353((111-119)), NS4b 2423((181-189)), and NS4a 2148((56-64)). CONCLUSIONS/SIGNIFICANCE:This is the first study to demonstrate infection of human cells and functional DENV-specific T cell responses in DENV-infected humanized mice. Overall, these mice should be a valuable tool to study the role of prior immunity on subsequent DENV infections

    Identification of GSK3186899/DDD853651 as a Preclinical Development Candidate for the Treatment of Visceral Leishmaniasis

    Get PDF
    The leishmaniases are diseases that affect millions of people across the world, in particular visceral leishmaniasis (VL) which is fatal unless treated. Current standard of care for VL suffers from multiple issues and there is a limited pipeline of new candidate drugs. As such, there is a clear unmet medical need to identify new treatments. This paper describes the optimization of a phenotypic hit against Leishmania donovani, the major causative organism of VL. The key challenges were to balance solubility and metabolic stability while maintaining potency. Herein, strategies to address these shortcomings and enhance efficacy are discussed, culminating in the discovery of preclinical development candidate GSK3186899/DDD853651 (<b>1</b>) for VL

    Anti-trypanosomatid drug discovery:an ongoing challenge and a continuing need

    Get PDF
    corecore