112 research outputs found

    Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    Full text link
    Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using Geant4 version 9.6 are compared.Comment: 26 pages, 16 figures, JINST style, changes in the author list, typos corrected, new section added, figures regrouped. Accepted for publication in JINS

    Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    Get PDF
    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques

    The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers

    Get PDF
    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS

    Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    Full text link
    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE scintillator-tungsten analogue hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table

    Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter

    Get PDF
    The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from Geant4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h/e, are estimated using the extrapolation and decomposition of the longitudinal profiles.Comment: 38 pages, 19 figures, 5 tables; author list changed; submitted to JINS

    Identifying water stress-response mechanisms in citrus by in silico transcriptome analysis

    Full text link

    Construction and response of a highly granular scintillator-based electromagnetic calorimeter

    Get PDF
    A highly granular electromagnetic calorimeter with scintillator strip readout is being developed for future linear collider experiments. A prototype of 21.5 푋0 depth and 180 × 180 mm2 transverse dimensions was constructed, consisting of 2160 individually read out 10 × 45 × 3 mm3 scintillator strips. This prototype was tested using electrons of 2–32 GeV at the Fermilab Test Beam Facility in 2009. Deviations from linear energy response were less than 1.1%, and the intrinsic energy resolution was determined to be (12.5±0.1(stat.)±0.4(syst.))%∕√퐸[GeV]⊕(1.2± 0.1(stat.)+0.6−0.7(syst.))%, where the uncertainties correspond to statistical and systematic sources, respectively

    Identification of Secret Agent as the O-GlcNAc Transferase That Participates in Plum Pox Virus Infection

    No full text
    Serine and threonine of many nuclear and cytoplasmic proteins are posttranslationally modified with O-linked N-acetylglucosamine (O-GlcNAc). This modification is made by O-linked N-acetylglucosamine transferases (OGTs). Genetic and biochemical data have demonstrated the existence of two OGTs of Arabidopsis thaliana, SECRET AGENT (SEC) and SPINDLY (SPY), with at least partly overlapping functions, but there is little information on their target proteins. The N terminus of the capsid protein (CP) of Plum pox virus (PPV) isolated from Nicotiana clevelandii is O-GlcNAc modified. We show here that O-GlcNAc modification of PPV CP also takes place in other plant hosts, N. benthamiana and Arabidopsis. PPV was able to infect the Arabidopsis OGT mutants sec-1, sec-2, and spy-3, but at early times of the infection, both rate of virus spread and accumulation were reduced in sec-1 and sec-2 relative to spy-3 and wild-type plants. By matrix-assisted laser desorption ionization-time of flight mass spectrometry, we determined that a 39-residue tryptic peptide from the N terminus of CP of PPV purified from the spy-3 mutant, but not sec-1 or sec-2, was O-GlcNAc modified, suggesting that SEC but not SPY modifies the capsid. While our results indicate that O-GlcNAc modification of PPV CP by SEC is not essential for infection, they show that the modification has a role(s) in the process
    corecore