56 research outputs found

    Tribological investigation of frictional behaviour of mild steel under canola bio-lubricant conditions

    Get PDF
    In this study, two stock engine oils were developed using different blends of a vegetable oil (canola oil), mixed with fully synthetic oil (0 %, 20 %, 40 %, 60 %, and 80 % of synthetic oil). The viscosity of the prepared blends was determined at different temperatures (20 ºC – 80 ºC). Tribological experiments were conducted, according to the conditions of the prepared lubricants, to investigate the influence of the newly developed oil on the frictional characteristics of mild steel material against stainless steel subjected to adhesive wear loading. Scanning electron microscopy was used to examine the worn surface of the mild steel. The results revealed that blending the canola oil with synthetic oil increases the viscosity of the lubricants. Moreover, the viscosity of the canola oil and its blends with synthetic oil is controlled by the environmental temperature since increasing the temperature reduces viscosity. The experimental results revealed that the frictional coefficient of the mild steel was dependent on the applied load and velocity rather than the sliding distance. In addition, pure canola oil as a lubricant was able to compete in performance with a blend of 80 % synthetic and 20 % canola oils

    Acquired nasopharyngeal stenosis correction using a modified palatal flaps technique in obstructive sleep apnea (OSA) patients

    Get PDF
    Background: Acquired nasopharyngeal stenosis is a rare and heterogeneous pathological condition that has different causes, generally resulting as a complication of a pharyngeal surgery, especially in patients affected by obstructive sleep apnea (OSA). Different approaches have been proposed for the treatment of nasopharyngeal stenosis but a unique and standardized management has not yet been presented. The aim of our paper is to evaluate the efficacy of our surgical technique, describing its steps and results with the aim to consider it as a possible solution for the treatment of this condition. Methods: This is a retrospective cohort study. Eight patients (mean age 27.25 years old (yo), range 8–67 yo; Male/Female ratio 4/4; mean body mass index (BMI) 26.1) affected by OSA (mean apnea hypopnea index (AHI) before OSA surgery was 22.1) and acquired nasopharyngeal stenosis as a consequence of different pharyngeal surgeries were treated with our modified approach in the Department of Otolaryngology, Morgagni Pierantoni Hospital, Forlì, Italy. Resolution of stenosis and complication rate were the main outcome measures. Results: Complete resolution of the stenosis was achieved in all cases and no complications were recorded at three weeks, six months, and 2 years follow-up. Conclusions: Our technique appears to be a promising method for the management of nasopharyngeal stenosis in OSA patients. However, further studies comparing different techniques and reporting on larger series and longer follow up time are needed to prove the efficacy of the proposed technique

    Encapsulated deep eutectic solvent for esterification of free fatty acid

    Get PDF
    A novel encapsulated deep eutectic solvent (DES) was introduced for biodiesel production via a two-step process. The DES was encapsulated in medical capsules and were used to reduce the free fatty acid (FFA) content of acidic crude palm oil (ACPO) to the minimum acceptable level (< 1%). The DES was synthesized from methyltriphenylphosphonium bromide (MTPB) and p-toluenesulfonic acid (PTSA). The effects pertaining to different operating conditions such as capsule dosage, reaction time, molar ratio, and reaction temperature were optimized. The FFA content of ACPO was reduced from existing 9.61% to less than 1% under optimum operating conditions. This indicated that encapsulated MTPB-DES performed high catalytic activity in FFA esterification reaction and showed considerable activity even after four consecutive recycling runs. The produced biodiesel after acid esterification and alkaline transesterification met the EN14214 international biodiesel standard specifications. To our best knowledge, this is the first study to introduce an acidic catalyst in capsule form. This method presents a new route for the safe storage of new materials to be used for biofuel production. Conductor-like screening model for real solvents (COSMO-RS) representation of the DES using σ-profile and σ-potential graphs indicated that MTPB and PTSA is a compatible combination due to the balanced presence and affinity towards hydrogen bond donor and hydrogen bond acceptor in each constituent

    NeuroPlace: categorizing urban places according to mental states

    Get PDF
    Urban spaces have a great impact on how people’s emotion and behaviour. There are number of factors that impact our brain responses to a space. This paper presents a novel urban place recommendation approach, that is based on modelling in-situ EEG data. The research investigations leverages on newly affordable Electroencephalogram (EEG) headsets, which has the capability to sense mental states such as meditation and attention levels. These emerging devices have been utilized in understanding how human brains are affected by the surrounding built environments and natural spaces. In this paper, mobile EEG headsets have been used to detect mental states at different types of urban places. By analysing and modelling brain activity data, we were able to classify three different places according to the mental state signature of the users, and create an association map to guide and recommend people to therapeutic places that lessen brain fatigue and increase mental rejuvenation. Our mental states classifier has achieved accuracy of (%90.8). NeuroPlace breaks new ground not only as a mobile ubiquitous brain monitoring system for urban computing, but also as a system that can advise urban planners on the impact of specific urban planning policies and structures. We present and discuss the challenges in making our initial prototype more practical, robust, and reliable as part of our on-going research. In addition, we present some enabling applications using the proposed architecture

    Changes in appetite, energy intake, body composition and circulating ghrelin constituents during an incremental trekking ascent to high altitude

    Get PDF
    Purpose Circulating acylated ghrelin concentrations are associated with altitude-induced anorexia in laboratory environments, but have never been measured at terrestrial altitude. This study examined time course changes in appetite, energy intake, body composition, and ghrelin constituents during a high-altitude trek. Methods Twelve participants [age: 28(4) years, BMI 23.0(2.1) kg m−2] completed a 14-day trek in the Himalayas. Energy intake, appetite perceptions, body composition, and circulating acylated, des-acylated, and total ghrelin concentrations were assessed at baseline (113 m, 12 days prior to departure) and at three fixed research camps during the trek (3619 m, day 7; 4600 m, day 10; 5140 m, day 12). Results Relative to baseline, energy intake was lower at 3619 m (P = 0.038) and 5140 m (P = 0.016) and tended to be lower at 4600 m (P = 0.056). Appetite perceptions were lower at 5140 m (P = 0.027) compared with baseline. Acylated ghrelin concentrations were lower at 3619 m (P = 0.046) and 4600 m (P = 0.038), and tended to be lower at 5140 m (P = 0.070), compared with baseline. Des-acylated ghrelin concentrations did not significantly change during the trek (P = 0.177). Total ghrelin concentrations decreased from baseline to 4600 m (P = 0.045). Skinfold thickness was lower at all points during the trek compared with baseline (P ≤ 0.001) and calf girth decreased incrementally during the trek (P = 0.010). Conclusions Changes in plasma acylated and total ghrelin concentrations may contribute to the suppression of appetite and energy intake at altitude, but differences in the time course of these responses suggest that additional factors are also involved. Interventions are required to maintain appetite and energy balance during trekking at terrestrial altitudes

    Synthesis, characterization and antibacterial activity studies of new 2‑pyrral‑L‑amino acid Schif base palladium (II) complexes.

    Get PDF
    Three new 2-pyrral amino acid Schif base palladium (II) complexes were synthesized, characterized and their activity against six bacterial species was investigated. The ligands: Potassium 2-pyrrolidine-L-methioninate (L1), Potassium 2-pyrrolidine-L-histidinate (L2) and Potassium 2-pyrrolidine-L-tryptophanate (L3) were synthesized and reacted with dichloro(1,5- cyclooctadiene)palladium(II) to form new palladium (II) complexes C1, C2 and C3, respectively. 1 NMR, FTIR, UV–Vis,elemental analysis and conductivity measurements were used to characterize the products. The antibacterial activities of the compounds were evaluated against Gram-positive Staphylococcus aureus (S. aureus, ATCC 25923), methicillin-resistant Staphylococcus aureus (MRSA, ATCC 33591), Staphylococcus epidermidis (S. epidermidis, ATCC 12228) and Streptococcus pyogenes (S. pyogenes, ATCC 19615) and, gram-negative Pseudomonas aeruginosa (P. aeruginosa, ATCC 27853) and Klebsiella pneumoniae (K. pneumoniae, ATCC 13883) using the agar well difusion assay and microtitre plate serial dilution method. The palladium complexes were active against the selected bacteria with the imidazole ring containing complex C2 and indole heterocyclic ring containing complex C3 showing the highest activity

    Tribological behavior of mild steel under canola biolubricant conditions

    Get PDF
    New lubricants based on vegetable oil were developed in this study. Different blends of canola oil mixed with fully synthetic two stock engine oils were developed (0, 20%, 40%, 60%, and 80% of synthetic oil).  The viscosity of the prepared blends was determined at different temperatures (20°C–80°C). Tribological experiments were conducted to investigate the effect of the newly developed oil on the wear characteristics of mild steel material compared with stainless steel when subjected to adhesive wear loading. The weight loss (WL) and the specific wear rate (SWR) of the mild steel using each of the prepared lubricants were determined. Scanning electron microscopy was used to examine the worn surface of the mild steel. The results revealed that pure canola oil as a lubricant performed competitively against a blend of 80% synthetic and 20% canola oils. The viscosity of the canola oil and its various blends with synthetic oil are controlled by the environmental temperature since an increased temperature reduces the viscosity. Also, the experimental results revealed that operating parameters play the main role in controlling the wear behavior of mild steel since increasing the sliding distances increases the weight loss. The specific wear rate exhibited a steady state after about 5 km sliding distance, and different blends influenced the applied loads and velocity differently. The mixing ratio of canola and syntactic oil was not particularly significant since the pure canola oil exhibited competitive wear performance compared with the blends. However, an intermediate mixing ratio (40%–60% synthetic oil mixed with 60%–40% canola) can produce a slightly low specific wear rate among other things

    Experimental investigation on the interfacial adhesion of date palm fibres with epoxy matrix

    Get PDF
    Interfacial adhesion of natural fibres as reinforcement is the key parameter to be considered in fibre polymeric composites. In the current work, interfacial adhesion of date palm fibre is inverstigated using single fibre pull out experiments. The interfacial property of date pal fibre was determined with epoxy matrix. Scanning Electron Microscopy (SEM) was used to examine the surface morphology and damage feature on the fibre before and after the test. The influence NaOH treatment at different concentrations (0% - 9%) and embedded fibre length in the epoxy matric are considered. The results revealed that treated the fibre with 6% NaOH highly enhanced interfacial adhesion of the date palm fibre with epoxy matrix. The embedded length of the fibre controlled the interfacial adhesion property of the fibre where 15mm embedded length was the optimum fibre length. The lowest fibre critical length can be obtained at lower fibre diameter and 6% NaOH treatment
    corecore