75 research outputs found

    The LyAlpha Line Profiles of Ultraluminous Infrared Galaxies: Fast Winds and Lyman Continuum Leakage

    Full text link
    We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect H Lyman alpha emission from 8 ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the H Lyman alpha profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km/s in three HII-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the H Lyman alpha line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The H Lyman alpha attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the H Lyman alpha photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the H Lyman alpha and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the H Lyman alpha emission increases non-linearly with the ULIRG bolometric luminosity and represents about 0.1 to 1% of the radiative cooling from the hot winds in the HII-dominated ULIRGs.Comment: Submitted to Ap

    The metallicity evolution of low mass galaxies: New constraints at intermediate redshift

    Get PDF
    We present abundance measurements from 26 emission-line selected galaxies at z~0.6-0.7. By reaching stellar masses as low as 10^8 M_{\sun}, these observations provide the first measurement of the intermediate redshift mass-metallicity (MZ) relation below 10^9 M_{\sun} For the portion of our sample above M > 10^9 M_{\sun} (8/26 galaxies), we find good agreement with previous measurements of the intermediate redshift MZ relation. Compared to the local relation, we measure an evolution that corresponds to a 0.12 dex decrease in oxygen abundances at intermediate redshifts. This result confirms the trend that metallicity evolution becomes more significant towards lower stellar masses, in keeping with a downsizing scenario where low mass galaxies evolve onto the local MZ relation at later cosmic times. We show that these galaxies follow the local fundamental metallicity relation, where objects with higher specific (mass-normalized) star formation rates (SFRs) have lower metallicities. Furthermore, we show that the galaxies in our sample lie on an extrapolation of the SFR-M_{*} relation (the star-forming main sequence). Leveraging the MZ relation and star-forming main sequence (and combining our data with higher mass measurements from the literature), we test models that assume an equilibrium between mass inflow, outflow and star formation. We find that outflows are required to describe the data. By comparing different outflow prescriptions, we show that momentum driven winds can describe the MZ relation; however, this model under-predicts the amount of star formation in low mass galaxies. This disagreement may indicate that preventive feedback from gas-heating has been overestimated, or it may signify a more fundamental deviation from the equilibrium assumption.Comment: Accepted for publication in Ap

    A search for Lyman Break Galaxies at z>8 in the NICMOS Parallel Imaging Survey

    Get PDF
    We have selected 14 J-dropout Lyman Break Galaxy (LBG) candidates with J110 - H160 > 2.5 from the NICMOS Parallel Imaging Survey. This survey consists of 135 square arcminutes of imaging in 228 independent sight lines, reaching average 5 sigma sensitivities of J110 = 25.8 and H160 = 25.6 (AB). Distinguishing these candidates from dust reddened star forming galaxies at z ~ 2-3 is difficult, and will require longer wavelength observations. We consider the likelihood that any J-dropout LBGs exist in this survey, and find that if L*(z=9.5) is significantly brighter than L*(z=6) (a factor of four), then a few J-dropout LBGs are likely. A similar increase in luminosity has been suggested by Eyles et al. and Yan et al., but the magnitude of this increase is uncertain.Comment: Accepted to ApJ Letter

    Predicting Future Space Near-IR Grism Surveys using the WFC3 Infrared Spectroscopic Parallels Survey

    Get PDF
    We present near-infrared emission line counts and luminosity functions from the HST WFC3 Infrared Spectroscopic Parallels (WISP) program for 29 fields (0.037 deg^2) observed using both the G102 and G141 grisms. Altogether we identify 1048 emission line galaxies with observed equivalent widths greater than 40 Angstroms, 467 of which have multiple detected emission lines. The WISP survey is sensitive to fainter flux levels (3-5x10^-17 ergs/s/cm^2) than the future space near-infrared grism missions aimed at baryonic acoustic oscillation cosmology (1-4x10^-16 ergs/s/cm^2), allowing us to probe the fainter emission line galaxies that the shallower future surveys may miss. Cumulative number counts of 0.7<z<1.5 galaxies reach 10,000 deg^-2 above an H-alpha flux of 2x10^-16 ergs/s/cm^2. H-alpha-emitting galaxies with comparable [OIII] flux are roughly 5 times less common than galaxies with just H-alpha emission at those flux levels. Galaxies with low H-alpha/[OIII] ratios are very rare at the brighter fluxes that future near-infrared grism surveys will probe; our survey finds no galaxies with H-alpha/[OIII] < 0.95 that have H-alpha flux greater than 3x10^-16 ergs/s/cm^2. Our H-alpha luminosity function contains a comparable number density of faint line emitters to that found by the NICMOS near-infrared grism surveys, but significantly fewer (factors of 3-4 less) high luminosity emitters. We also find that our high redshift (z=0.9-1.5) counts are in agreement with the high redshift (z=1.47) narrow band H-alpha survey of HiZELS (Sobral et al. 2013), while our lower redshift luminosity function (z=0.3-0.9) falls slightly below their z=0.84 result. The evolution in both the H-alpha luminosity function from z=0.3--1.5 and the [OIII] luminosity function from z=0.7-2.3 is almost entirely in the L* parameter, which steadily increases with redshift over those ranges.Comment: 18 pages, 14 figures, Accepted by Ap

    The Grism Lens-Amplified Survey from Space (GLASS) X. Sub-kpc resolution gas-phase metallicity maps at cosmic noon behind the Hubble Frontier Fields cluster MACS1149.6+2223

    Get PDF
    (Abridged) We combine deep HST grism spectroscopy with a new Bayesian method to derive maps of gas-phase metallicity, nebular dust extinction, and star-formation rate for 10 star-forming galaxies at high redshift (1.2<z<2.31.2<z<2.3). Exploiting lensing magnification by the foreground cluster MACS1149.6+2223, we reach sub-kpc spatial resolution and push the stellar mass limit associated with such high-z spatially resolved measurements below 108M10^8M_\odot for the first time. Our maps exhibit diverse morphologies, indicative of various effects such as efficient radial mixing from tidal torques, rapid accretion of low-metallicity gas, etc., which can affect the gas and metallicity distributions in individual galaxies. Based upon an exhaustive sample of all existing sub-kpc metallicity gradients at high-z, we find that predictions given by analytical chemical evolution models assuming a relatively extended star-formation profile in the early disk formation phase can explain the majority of observed gradients, without involving galactic feedback or radial outflows. We observe a tentative correlation between stellar mass and metallicity gradient, consistent with the downsizing galaxy formation picture that more massive galaxies are more evolved into a later phase of disk growth, where they experience more coherent mass assembly at all radii and thus show shallower metallicity gradients. In addition, we compile a sample of homogeneously cross-calibrated integrated metallicity measurements spanning three orders of magnitude in stellar mass at z1.8z\sim1.8. We use this sample to study the mass-metallicity relation (MZR) and test the fundamental metallicity relation (FMR). The slope of the observed MZR can rule out the momentum-driven wind model at 3-σ\sigma confidence level. We find no significant offset with respect to the FMR, taking into account the intrinsic scatter and measurement uncertainties.Comment: 26 pages, 14 figures, and 6 table

    Physical Properties of Emission-Line Galaxies at z ~ 2 from Near-Infrared Spectroscopy with Magellan FIRE

    Get PDF
    We present results from near-infrared spectroscopy of 26 emission-line galaxies at z ~ 2 obtained with the FIRE spectrometer on the Magellan Baade telescope. The sample was selected from the WISP survey, which uses the near-infrared grism of the Hubble Space Telescope Wide Field Camera 3 to detect emission-line galaxies over 0.3 < z < 2.3. Our FIRE follow-up spectroscopy (R~5000) over 1.0-2.5 micron permits detailed measurements of physical properties of the z~2 emission-line galaxies. Dust-corrected star formation rates for the sample range from ~5-100 M_sun yr-1. We derive a median metallicity for the sample of ~0.45 Z_sun, and the estimated stellar masses range from ~10^8.5 - 10^9.5 M_sun. The average ionization parameters measured for the sample are typically much higher than what is found for local star-forming galaxies. We derive composite spectra from the FIRE sample, from which we infer typical nebular electron densities of ~100-400 cm^-3. Based on the location of the galaxies and composite spectra on BPT diagrams, we do not find evidence for significant AGN activity in the sample. Most of the galaxies as well as the composites are offset in the BPT diagram toward higher [O III]/H-beta at a given [N II]/H-alpha, in agreement with other observations of z > 1 star-forming galaxies, but composite spectra derived from the sample do not show an appreciable offset from the local star-forming sequence on the [O III]/H-beta versus [S II]/H-alpha diagram. We infer a high nitrogen-to-oxygen abundance ratio from the composite spectrum, which may contribute to the offset of the high-redshift galaxies from the local star-forming sequence in the [O III]/H-beta versus [N II]/H-alpha diagram. We speculate that the elevated nitrogen abundance could result from substantial numbers of Wolf-Rayet stars in starbursting galaxies at z~2. (Abridged)Comment: Accepted for publication in Ap

    First Census of Gas-phase Metallicity Gradients of Star-forming Galaxies in Overdense Environments at Cosmic Noon

    Full text link
    We report the first spatially resolved measurements of gas-phase metallicity radial gradients in star-forming galaxies in overdense environments at z2z\gtrsim2. The spectroscopic data are acquired by the \mg\ survey, a Hubble Space Telescope (HST) cycle-28 medium program. This program is obtaining 45 orbits of WFC3/IR grism spectroscopy in the density peak regions of three massive galaxy protoclusters (BOSS 1244, BOSS 1542 and BOSS 1441) at z=23z=2-3. Our sample in the BOSS 1244 field consists of 20 galaxies with stellar-mass ranging from 109.010^{9.0} to 1010.310^{10.3} \Msun\ , star formation rate (SFR) from 10 to 240 \Msun\,yr1^{-1}, and global gas-phase metallicity (\oh) from 8.2 to 8.6. At 1σ1\sigma confidence level, 2/20 galaxies in our sample show positive (inverted) gradients -- the relative abundance of oxygen increasing with galactocentric radius, opposite the usual trend. Furthermore, 1/20 shows negative gradients and 17/20 are consistent with flat gradients. This high fraction of flat/inverted gradients is uncommon in simulations and previous observations conducted in blank fields at similar redshifts. To understand this, we investigate the correlations among various observed properties of our sample galaxies. We find an anticorrelation between metallicity gradient and global metallicity of our galaxies residing in extreme overdensities, and a marked deficiency of metallicity in our massive galaxies as compared to their coeval field counterparts. We conclude that the cold-mode gas accretion plays an active role in shaping the chemical evolution of galaxies in the protocluster environments, diluting their central chemical abundance, and flattening/inverting their metallicity gradients.Comment: 13 pages, 6 figures, 1 table. Accepted for publication in ApJ

    Expanding the search for galaxies at z ~7-10 with new NICMOS Parallel Fields

    Get PDF
    We have carried out a search for galaxies at z ~ 7-10 in ~14.4 sq. arcmin of new NICMOS parallel imaging taken in the Great Observatories Origins Deep Survey (GOODS, 5.9 sq. arcmin), the Cosmic Origins Survey (COSMOS, 7.2 sq. arcmin), and SSA22 (1.3 sq. arcmin). These images reach 5 sigma sensitivities of J110 = 26.0-27.5 (AB), and combined they increase the amount of deep near-infrared data by more than 60% in fields where the investment in deep optical data has already been made. We find no z>7 candidates in our survey area, consistent with the Bouwens et al. (2008) measurements at z~7 and 9 (over 23 sq. arcmin), which predict 0.7 galaxies at z~7 and <0.03 galaxies at z~9. We estimate that 10-20% of z>7 galaxies are missed by this survey, due to incompleteness from foreground contamination by faint sources. For the case of luminosity evolution, assuming a Schecter parameterization with a typical phi* = 10^-3 Mpc^-3, we find M* > -20.0 for z~7 and M* > -20.7 for z~9 (68% confidence). This suggests that the downward luminosity evolution of LBGs continues to z~7, although our result is marginally consistent with the z~6 LF of Bouwens et al.(2006, 2007). In addition we present newly-acquired deep MMT/Megacam imaging of the z~9 candidate JD2325+1433, first presented in Henry et al. (2008). The resulting weak but significant detection at i' indicates that this galaxy is most likely an interloper at z~2.7.Comment: Accepted to ApJ. Replacement includes updated discussion of incompleteness from foreground contaminatio
    corecore