43 research outputs found

    Evaluation of high-throughput genomic assays for the Fc gamma receptor locus

    Get PDF
    Cancer immunotherapy has been revolutionised by the use of monoclonal antibodies (mAb) that function through their interaction with Fc gamma receptors (FcγRs). The low-affinity FcγR genes are highly homologous, map to a complex locus at 1p23 and harbour single nucleotide polymorphisms (SNPs) and copy number variation (CNV) that can impact on receptor function and response to therapeutic mAbs. This complexity can hinder accurate characterisation of the locus. We therefore evaluated and optimised a suite of assays for the genomic analysis of the FcγR locus amenable to peripheral blood mononuclear cells and formalin-fixed paraffin-embedded (FFPE) material that can be employed in a high-throughput manner. Assessment of TaqMan genotyping for FCGR2A-131H/R, FCGR3A-158F/V and FCGR2B-232I/T SNPs demonstrated the need for additional methods to discriminate genotypes for the FCGR3A-158F/V and FCGR2B-232I/T SNPs due to sequence homology and CNV in the region. A multiplex ligation-dependent probe amplification assay provided high quality SNP and CNV data in PBMC cases, but there was greater data variability in FFPE material in a manner that was predicted by the BIOMED-2 multiplex PCR protocol. In conclusion, we have evaluated a suite of assays for the genomic analysis of the FcγR locus that are scalable for application in large clinical trials of mAb therapy. These assays will ultimately help establish the importance of FcγR genetics in predicting response to antibody therapeutics

    Endothelial cell, myeloid, and adaptive immune responses in SARS‐CoV‐2 infection

    No full text
    International audienceSARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is an emerging respiratory pathogen that has rapidly spread in human populations. Severe forms of infection associate cytokine release syndrome and acute lung injury due to hyperinflammatory responses even though virus clearance is achieved. Key components of inflammation include immune cell recruitment in infected tissues, a step which is under the control of endothelial cells. Here, we review endothelial cell responses in inflammation and infection due to SARS-CoV-2 together with phenotypic and functional alterations of monocytes, T and B lymphocytes with which they interact. We surmise that endothelial cells function as an integrative and active platform for the various cells recruited, where fine tuning of immune responses takes place and which provides opportunities for therapeutic intervention

    Identification of Novel Human Monocyte Subsets and Evidence for Phenotypic Groups Defined by Interindividual Variations of Expression of Adhesion Molecules

    No full text
    International audienceMonocytes contribute to immune responses as a source for subsets of dendritic cells and macrophages. Human blood monocytes are classified as classical, non-classical and intermediate cells. However, the particular functions of these subsets have been hard to define, with conflicting results and significant overlaps. One likely reason for these ambiguities is in the heterogeneity of these monocyte subsets regrouping cells with divergent functions. To better define monocyte populations, we have analysed expression of 17 markers by multicolour flow cytometry in samples obtained from 28 control donors. Data acquisition was tailored to detect populations present at low frequencies. Our results reveal the existence of novel monocyte subsets detected as larger CD14+ cells that were CD16+ or CD16neg. These large monocytes differed from regular, smaller monocytes with respect to expression of various cell surface molecules, such as FcR, chemokine receptors, and adhesion molecules. Unsupervised multidimensional analysis confirmed the existence of large monocytes and revealed interindividual variations that were grouped according to unique patterns of expression of adhesion molecules CD62L, CD49d, and CD43. Distinct inflammatory responses to TLR agonists were found in small and large monocytes. Overall, refining the definition of monocyte subsets should lead to the identification of populations with specific functions

    Human monocytes differentiate into dendritic cells subsets that induce anergic and regulatory T cells in sepsis.

    Get PDF
    BACKGROUND: Sepsis is a multifactorial pathology with high susceptibility to secondary infections. Innate and adaptive immunity are affected in sepsis, including monocyte deactivation. METHODOLOGY/PRINCIPAL FINDINGS: To better understand the effects of alterations in monocytes on the regulation of immune responses during sepsis, we analyzed their differentiation in dendritic cell (DC). Cells from septic patients differentiated overwhelmingly into CD1a-negative DC, a population that was only a minor subset in controls and that is so far poorly characterized. Analysis of T cell responses induced with purified CD1a-negative and CD1a+ DC indicated that (i) CD1a-negative DC from both healthy individuals and septic patients fail to induce T cell proliferation, (ii) TGFβ and IL-4 were strongly produced in mixed leukocyte reaction (MLR) with control CD1a-negative DC; reduced levels were produced with patients DC together with a slight induction of IFNγ, (iii) compared to controls, CD1a+ DC derived from septic patients induced 3-fold more Foxp3+ T cells. CONCLUSION/SIGNIFICANCE: Our results indicate a strong shift in DC populations derived from septic patients' monocytes with expanded cell subsets that induce either T cell anergy or proliferation of T cells with regulatory potential. Lower regulatory cytokines induction on a per cell basis by CD1a-negative dendritic cells from patients points however to a down regulation of immune suppressive abilities in these cells

    Alteration of CD1 expression in multiple sclerosis

    No full text
    International audienceStudies of multiple sclerosis (MS) have concentrated mainly on antigen pre-sentation of peptides derived from the myelin sheath, while the implication of lipid antigen has been less explored in this pathology. As the extracellular environment regulates expression of the lipid antigen-presenting molecule CD1, we have examined whether sera from patients alters CD1 surface expres-sion in monocyte-derived dendritic cells. We have shown that: (i) CD1 group 1 proteins were highly expressed in the presence of MS sera; (ii) sera from MS patients differentially regulated CD1 group 1 versus CD1 group 2 molecular expression; and (iii) CD1 was expressed strongly in monocytes from MS patients under immunosuppressive treatment. Overall, these results reveal that CD1 expression is modified in MS and provide novel information on the regulation of lipid antigen presentation in myeloid cells
    corecore