17 research outputs found

    An integrated multi-criteria decision-making framework for a medical device selection in the healthcare industry

    Get PDF
    Medical devices used in healthcare organizations are costly, and the process of selecting these devices requires considering multiple criteria such as effectiveness and ease of use. Careful selection of these devices is daunting since it entails the evaluation of various measures. This research investigates the selection process of the same type of medical devices, especially when alternatives are available, and the organization needs to make a good selection. A Multi-Criteria Decision-Making (MCDM) framework based on the integration of the Analytical Hierarchy Process (AHP) and ELimination Et Choice Translating Reality (ELECTRE) method is developed. The framework model includes 10 criteria, which are selected based on real-life inputs from professional physicians. Seven Ultrasound machines (referred to as alternatives) are evaluated using the developed framework. A case study is conducted on the best selection practice of an Ultrasound machine in a gynecology clinic based in the Kingdom of Jordan. Results revealed that the best and worst alternatives of ultrasound machines are identified and compared with all other options

    Integrating the physics with data analytics for the hybrid modeling of the granulation process

    Get PDF
    A hybrid model based on physical and data interpretations to investigate the high shear granulation (HSG) process is proposed. This model integrates three separate component models, namely, a computational fluid dynamics model, a population balance model, and a radial basis function model, through an iterative procedure. The proposed hybrid model is shown to provide the required understanding of the HSG process, and to also accurately predict the properties of the granules. Furthermore, a new fusion model based on integrating fuzzy logic theory and the Dempster-Shafer theory is also developed. The motivation for such a new modeling framework stems from the fact that integrating predictions from models which are elicited using different paradigms can lead to a more robust and accurate topology. As a result, significant improvements in prediction performance have been achieved by applying the proposed framework when compared to single models

    A dynamic type-1 fuzzy logic system for the development of a new warehouse assessment scheme

    Get PDF
    A new dynamic assessment algorithm based on the Type-1 Fuzzy Logic System (T1FLS) is proposed in this research work to develop a dynamic warehouse assessment scheme. First, the criteria and the sub-criteria that affect a warehouse performance are identified and, then, classified into a number of clusters. Second, the warehouse performance score is determined by employing the T1FLS that is developed by using expert knowledge and/or digital data. The data for the new assessed warehouses are then evaluated to ensure that the new data are not redundant and, thus, can lead to meaningful information. Finally, such new data are utilized to dynamically update the T1FLS. The algorithm has been validated on a series of actual warehouses in Jordan, and it has been shown that the presented scheme can successfully assess the warehouses with respect to the identified criteria. In addition to being dynamic, the newly proposed assessment framework can take into consideration uncertainties naturally, this being due to fuzzy logic which has the ability to model them intrinsically via the concept of vagueness

    A predictive integrated framework based on the radial basis function for the modelling of the flow of pharmaceutical powders

    Get PDF
    This study presents a modelling framework to predict the flowability of various commonly used pharmaceutical powders and their blends. The flowability models were trained and validated on 86 samples including single components and binary mixtures. Two modelling paradigms based on artificial intelligence (AI) namely, a radial basis function (RBF) and an integrated network were employed to model the flowability represented by the flow function coefficient (FFC) and the bulk density (RHOB). Both approaches were utilized to map the input parameters (i.e. particle size, shape descriptors and material type) to the flow properties. The input parameters of the blends were determined from the particle size, shape and material type properties of the single components. The results clearly indicated that the integrated network outperformed the single RBF network in terms of the predictive performance and the generalization capabilities. For the integrated network, the coefficient of determination of the testing data set (not used for training the model) for FFC was R2=0.93, reflecting an acceptable predictive power of this model. Since the flowability of the blends can be predicted from single component size and shape descriptors, the integrated network can assist formulators in selecting excipients and their blend concentrations to improve flowability with minimal experimental effort and material resulting in the (i) minimization of the time required, (ii) exploration and examination of the design space, and (iii) minimization of material waste

    A new framework for warehouse assessment using a Genetic-Algorithm driven analytic network process

    Get PDF
    A novel way of integrating the genetic algorithm (GA) and the analytic network process (ANP) is presented in this paper in order to develop a new warehouse assessment scheme, which is developed through various stages. First, we define the main criteria that influence a warehouse performance. The proposed algorithm that integrates the GA with the ANP is then utilized to determine the relative importance values of the defined criteria and sub-criteria by considering the interrelationships among them, and assign strength values for such interrelationships. Such an algorithm is also employed to linguistically present the relative importance and the strength of the interrelationships in a way that can circumvent the use of pairwise comparisons. Finally, the audit checklist that consists of questions related to the criteria is integrated with the proposed algorithm for the development of the warehouse assessment scheme. Validated on 45 warehouses, the proposed scheme has been shown to be able to identify the warehouse competitive advantages and the areas where more improvements can be achieved

    The development of a radial based integrated network for the modelling of 3D fused deposition

    Get PDF
    Purpose The purpose of this research paper is to investigate and model the fused deposition modelling (FDM) process to predict the mechanical attributes of 3D printed specimens. Design/methodology/approach By exploiting the main effect plots, a Taguchi L18 orthogonal array is used to investigate the effects of such parameters on three mechanical attributes of the 3D printed specimens. A radial-based integrated network is then developed to map the eight FDM parameters to the three mechanical attributes for both PEEK and PEKK. Such an integrated network maps and predicts the mechanical attributes through two consecutive phases that consist of several radial basis functions (RBFs). Findings Validated on a set of further experiments, the integrated network was successful in predicting the mechanical attributes of the 3D printed specimens. It also outperformed the well-known RBF network with an overall improvement of 24% in the coefficient of determination. The integrated network is also further validated by predicting the mechanical attributes of a medical-surgical implant (i.e. the MidFace Rim) as an application. Originality/value The main aim of this paper is to accurately predict the mechanical properties of parts produced using the FDM process. Such an aim requires modelling a highly dimensional space to represent highly nonlinear relationships. Therefore, a radial-based integrated network based on the combination of composition and superposition of radial functions is developed to model FDM using a limited number of data points

    Transparent predictive modelling of the twin screw granulation process using a compensated interval type-2 fuzzy system

    Get PDF
    In this research, a new systematic modelling framework which uses machine learning for describing the granulation process is presented. First, an interval type-2 fuzzy model is elicited in order to predict the properties of the granules produced by twin screw granulation (TSG) in the pharmaceutical industry. Second, a Gaussian mixture model (GMM) is integrated in the framework in order to characterize the error residuals emanating from the fuzzy model. This is done to refine the model by taking into account uncertainties and/or any other unmodelled behaviour, stochastic or otherwise. All proposed modelling algorithms were validated via a series of Laboratory-scale experiments. The size of the granules produced by TSG was successfully predicted, where most of the predictions fit within a 95% confidence interval

    Fuzzy particle swarm for the right-first-time of fused deposition

    Get PDF
    Right-first-time production enables manufacturing companies to be profitable as well as competitive. Ascertaining such a concept is not as straightforward as it may seem in many industries, including 3D printing. Therefore, in this research paper, a right-first-time framework based on the integration of fuzzy logic and multi-objective swarm optimization is proposed to reverse-engineer the radial based integrated network. Such a framework was elicited to represent the fused deposition modelling (FDM) process. Such a framework aims to identify the optimal FDM parameters that should be used to produce a 3D printed specimen with the desired mechanical characteristics right from the first time. The proposed right-first-time framework can determine the optimal set of the FDM parameters that should be used to 3D print parts with the required characteristics. It has been proven that the right-first-time model developed in this paper has the ability to identify the optimal set of parameters successfully with an average error percentage of 4.7%. Such a framework is validated in a real medical case by producing three different medical implants with the desired mechanical characteristics for a 21-year-old patient

    Predictive modelling of the granulation process using a systems-engineering approach

    Get PDF
    © 2016 Elsevier B.V.The granulation process is considered to be a crucial operation in many industrial applications. The modelling of the granulation process is, therefore, an important step towards controlling and optimizing the downstream processes, and ensuring optimal product quality. In this research paper, a new integrated network based on Artificial Intelligence (AI) is proposed to model a high shear granulation (HSG) process. Such a network consists of two phases: in the first phase the inputs and the target outputs are used to train a number of models, where the predicted outputs from this phase and the target are used to train another model in the second phase to lead to the final predicted output. Because of the complex nature of the granulation process, the error residual is exploited further in order to improve the model performance using a Gaussian mixture model (GMM). The overall proposed network successfully predicts the properties of the granules produced by HSG, and outperforms also other modelling frameworks in terms of modelling performance and generalization capability. In addition, the error modelling using the GMM leads to a significant improvement in prediction
    corecore