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Abstract. Right-first-time production enables manufacturing companies to be profitable as well as competitive. 

Ascertaining such a concept is not as straightforward as it may seem in many industries, including 3D printing. 

Therefore, in this research paper, a right-first-time framework based on the integration of fuzzy logic and multi-

objective swarm optimization is proposed to reverse-engineer the radial based integrated network. Such a frame-

work was elicited to represent the fused deposition modelling (FDM) process. Such a framework aims to identify 

the optimal FDM parameters that should be used to produce a 3D printed specimen with the desired mechanical 

characteristics right from the first time. The proposed right-first-time framework can determine the optimal set of 

the FDM parameters that should be used to 3D print parts with the required characteristics. It has been proven that 

the right-first-time model developed in this paper has the ability to identify the optimal set of parameters successfully 

with an average error percentage of 4.7%.  Such a framework is validated in a real medical case by producing three 

different medical implants with the desired mechanical characteristics for a 21-year-old patient.  

Keywords: Fuzzy logic, Particle swarm optimization, Radial based integrated network, Right-first-time production.

1.  Introduction 

Nowadays, additive manufacturing, as a key ele-

ment of Industry 4.0, has been extensively employed 

in various areas such as medical, aerospace, manufac-

turing and tissue engineering  [1]. This can be at-

tributed to its ability to (i) produce complex and mon-

olithic products with many features; and (ii) flexibly 

amend designs [2]. Although the working principles 

of the different additive manufacturing technologies 

are different, their essence of adding materials in a 

layer-upon-layer or surface-upon-surface fashion is, 

in general, the same [1]. The different additive manu-

facturing techniques consist of fused deposition mod-

elling (FDM), resign-printing and laser sintering [3, 4]. 

Each technology has its own applications and 

strengths and limitations. Among them all, FDM is the 

most common technology employed in many applica-

tions [5]. Therefore, a huge body of research has fo-

cused on analyzing, modelling and optimizing this 

technology and the various thermoplastic polymers 

that can be printed  [6].  

Various papers have investigated the printability of 

various thermoplastic polymers (e.g., Polyether-ether-

ketone (PEEK), Polyether-ketone-ketone (PEKK) and 

Polycaprolactone) and the features of the 3D printed 

products for biomedical applications   [6]. For exam-

ple, both Polylactic acid (PLA) and hydroxyapatite re-

inforced PLA were printed using FDM to produce 

scaffolds and to analyze their mechanical, biocompat-

ibility and biodegradability properties [7]. To enhance 

the obtained properties of scaffolds without affecting 
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the rheological properties, nanohydroxyapatite and 

polyvinyl alcohol were added to PLA to obtain a struc-

ture that is similar to bones [8, 9]. In addition, the 

PEEK material and the carbon-enhanced version were 

employed to print different orthopaedic and dental 

parts  [10]. In addition to the various properties of the 

materials printed, the operation and the machine pa-

rameters have been examined [1, 11]. These parame-

ters should be determined and optimized carefully in 

order to obtain the desired characteristics of the 3D 

printed products. Thus, many research papers have 

presented different experimental as well as statistical 

algorithms to define and optimize these parameters 

[12]. A comparative analysis was, for example, con-

ducted to estimate the interrelationships among mate-

rial- and machine-related parameters and the charac-

teristics of the parts printed [13]. Likewise, the corre-

lation analysis and the analysis of variance were uti-

lized to statistically examine the effects of various pa-

rameters (e.g., orientation) on the characteristics of 

parts printed using different types of materials  [14-

18]. Furthermore, image correlation was employed to 

demonstrate the direct relationship between the mate-

rial thickness and the characteristics of printed parts 

[19]. Likewise, several research studies have been pre-

viously devoted to systematically mapping the FDM 

variables to the features of the printed parts. For dif-

ferent materials, the artificial neural network was, for 

instance, developed to map various FDM parameters 

to the strength of the printed parts [20, 21]. In addition 

to improving the generalization abilities of the neural 

network, it was combined with the dimensional anal-

ysis conceptual modelling to enhance the understand-

ing of the FDM process [22]. Moreover, a radial based 

integrated network was proposed to simulate the FDM 

process and to systematically and accurately anticipate 

the characteristics of 3D printed parts [5]. Likewise, 

fuzzy logic systems were utilized to simulate the FDM 

process and to extract a linguistic understanding [23].    

The many research studies in the related literature 

have provided a good understanding of 3D printing, in 

particular the FDM process, and presented various sta-

tistical and intelligent models that can be utilized to 

anticipate the features of the printed specimens. How-

ever, to the best of our knowledge, none of these stud-

ies has investigated the utilization of a right-first-time 

structure to identify the optimal 3D printing parame-

ters that need to be used to 3D print parts with required 

characteristics, this being due to the fact that inverting 

highly nonlinear and complex models may not be a 

straightforward task that leads to a unique set of FDM 

parameters. Therefore, in this research paper, the ra-

dial based integrated network that was presented in [5] 

is utilized in a right-first-time framework. Such a 

framework is proposed to identify the FDM parame-

ters that should be used to 3D print specimens with the 

desired mechanical characteristics. In general, invert-

ing highly nonlinear models usually leads to sets of 

parameters particularly when conflicting objectives 

need to be considered. Therefore, multi-objective op-

timization paradigms are commonly employed to 

identify a set of optimal solutions. Many multi-objec-

tive paradigms such as evolutionary and genetic ones 

have been implemented to find such a set of optimal 

solutions [24]. Because of its computational effi-

ciency, a stochastic-based particle swarm optimiza-

tion algorithm has been widely utilized [25, 26]. How-

ever, all multi-objective optimization algorithms in-

cluding the particle swarm optimization cannot iden-

tify a single optimal solution. Many research papers 

have addressed this issue by presenting various meth-

ods [27]. However, there is no standard method that 

can be employed to provide the single/global optimal 

solution and replace the Pareto optimal set [28]. 

Therefore, the proposed right-first-time structure inte-

grates the stochastic multi-objective particle swarm 

optimization and fuzzy logic in a way that can (i) ef-

fectively invert the radial based integrated network 

that was developed in [5]; and (ii) systematically iden-

tify the optimal set of the FDM parameters that need 

to be used to print 3D parts with the desired character-

istics according to defined criteria. The right-first-time 

framework is then validated using a real medical case 

where three medical parts need to be produced with 

desired characteristics and then implanted in a 21-

year-old patient. This paper is organized as follows: 

Section 2 discusses the experimental work. Section 3 

proposes the right-first-time framework and presents 

the theoretical background of the radial based inte-

grated network, and the integration of particle swarm 

optimization and fuzzy logic. The implementation and 

the results obtained are summarized in Section 4, 

whereas Section 5 presents the medical case and the 

validation of the proposed framework. Concluding re-

marks are finally discussed in Section 6. 

2.  Experimental work 

High-performance polymers, namely, PEEK and 

PEKK (3DXTECH Additive Manufacturing, Grand 

Rapids Michigan, USA) were utilized to print ASTM-

D638 specimens. A FUNMAT HT printer (INTAM-

SYS Technology Inc., Minneapolis, USA) was em-

ployed to print these specimens using different sets of 

FDM variables. The software used in this printer to 
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convert the design model to a GCODE format was In-

stamSuite 3.6.2. Eight FDM variables that can signif-

icantly determine the mechanical characteristics of the 

ASTM-D638 specimens and, thus, the properties of 

printed parts in general, are investigated in this paper. 

Such parameters with their levels are shown in Figure 

1. These parameters were examined, in this research 

work, using partial factorial design of experiments de-

signed according to the Taguchi L18 array. Therefore, 

36 experiments were performed for PEEK and PEKK. 

To ensure measurement repeatability, each one of 

these experiments was repeated three times.    

 
Figure 1 The fused deposition variables and their lev-

els. 

Once the printing of the standard specimens was 

completed, they were separated from the glass plate of 

the FUNMAT HT printer to cool down. Based on the 

manufacturer’s recommendations, PEKK parts were 

annealed. All the printed specimens were then charac-

terized in terms of their mechanical characteristics. In-

stron (SHIMADZU, USA) and the micro Vickers 

hardness tester (HTMV 2000M, echo LAB, Italy) 

were used to measure the ultimate tensile strength and 

elongation, and the micro-hardness, respectively. The 

average of the three measurements for each experi-

ment was then determined. While measuring the 

strength and elongation, it was noted that the speci-

mens’ fracture was different in terms of the patterns 

and locations [5]. In addition, the mechanical behav-

iours of the printed specimens were different when 

compared to those of the original filaments. To eluci-

date, the ultimate tensile strength and the elongation 

values have decreased and increased, respectively, af-

ter 3D printing PEEK and PEKK. Furthermore, the 

FDM variables differently affected these characteris-

tics of the specimens made using PEEK and PEKK. 

Figure 2 shows the correlation coefficients among the 

investigated parameters and the mechanical character-

istics. In addition to the reasonable correlation values, 

such a figure shows that the relationships among them 

depend on the materials used. Furthermore, the print 

orientation has direct and strong inverse relationships 

with elongation for PEEK and PEKK, respectively. 

Also, the raster width, for instance, directly and in-

versely affected the tensile strength and elongation 

and micro-hardness, respectively. The speed has al-

most a negligible effect on micro-hardness for PEEK 

but a considerable one for PEKK. Since the infill pat-

tern is considered to be a categorical variable, it was 

statistically analysed by employing the analysis of 

variance. It was noticed that it has considerable effects 

on all the mechanical characteristics of the two mate-

rials with p-values of less than 0.05. 
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Figure 2 The correlation coefficients for (a) Strength; 

(b) Elongation; and (c) Micro-hardness. 

 

3. The Right-First-Time Framework  

Being able to develop cost-effective customized 

products, reducing waste, as well as enhancing supply 

chain and inventory management are features that 

companies in different industries strive to achieve. 

This can be attributed to their potential advantages that 

make companies profitable as well as successful. In 

addition, they allow them to gain leverage in today’s 

highly competitive environment [29, 30]. Ascertain-

ing such features systematically may not be as simple 

as it appears at the first glance, in particular, for those 

industries whose (i) processes are highly dimensional, 

and (ii) products affect customer health and well-be-

ing. One of these industries is additive manufacturing 

or the so-called 3D printing whose various processes, 

particularly the FDM process, are highly dimensional 

because of the many printing parameters that impact 

the quality attributes of 3D printed products. Like-

wise, the FDM process has been recently used to pro-

duce products in the medical and tissue engineering 

areas. Thus, the quality attributes of the products pro-

duced need to be as defined. In addition, the relation-

ships among the printing parameters and their interac-

tions and the quality attributes of these products are 

highly nonlinear. Therefore, this right-first-time struc-

ture is developed in this paper to deal with the afore-

mentioned challenges and, thus, produce 3D printed 

parts with predefined quality characteristics right from 

the first time.  

Figure 3 is a schematic diagram of the proposed 

right-first-time structure. Such a diagram consists of 

several stages. First, a set of experiments is conducted 

to collect the data required to build a data-driven 

model. The experimental work conducted in this re-

search is briefly summarized in Section 2, where the 

effects of the eight parameters on the mechanical char-

acteristics were examined. Second, a radial based in-

tegrated network, as a powerful data-driven model, 

was established to (i) represent the relationships be-

tween the printing parameters and the mechanical 

characteristics; and, thus, (ii) be used to predict these 

mechanical characteristics for any set of printing pa-

rameters that are within the investigated range. Fi-

nally, such a network was exploited in the reverse-en-

gineering framework that is based on an optimization 

algorithm integrating PSO and fuzzy logic. Therefore, 

such a framework can identify the optimal set of the 

FDM printing parameters that need to be used to pro-

duce 3D printed parts with predefined mechanical 

characteristics. In other words, a 3D printed part with 

the predefined properties is produced right from the 

first time. It is worth mentioning that the presented 

structure is based on supervised algorithms, where the 

mechanical characteristics are required for the re-

verse-engineering framework. The radial based inte-

grated network and the proposed optimization algo-

rithm, which integrates PSO and fuzzy logic, are 

briefly presented in the following sub-sections to help 

readers in getting to grips with their theoretical back-

grounds. 
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Figure 3 The newly proposed right-first-time frame-

work for the FDM process. 

 

3.1. Radial Based Integrated Network 

Nowadays, data-based models have been used in 

various areas including, for example, pharmaceutics, 

manufacturing, diseases as well as automobiles  [5, 

30]. Such models, as the name indicates, and their pre-

dictive performances rely on the data utilized to de-

velop them. To elucidate, the data used to develop 

data-driven models need to be representative in terms 

of, for example, their distribution and amount other-

wise biased and inefficient models may result from 

unrepresentative data [29]. Acquiring such data is con-

sidered to be one of the challenging tasks in develop-

ing these models in particular, for the FDM process. 

This is because of the different FDM parameters that 

affect the features of the 3D parts, and their highly 

nonlinear interactions and relationships with the char-

acteristics of these parts [1]. Thus, an integrated net-

work based on radial basis functions is introduced to 

model such a process in two phases. In the first phase, 

a number of radial basis function (RBF) paradigms are 

utilized to simulate the FDM process by mapping its 

inputs to the mechanical characteristics. It is worth 

noting that these RBF networks may have different 

numbers of RBFs in the hidden layer and different val-

ues for their parameters. In the second phase, the out-

puts of these functions are mapped again to the me-

chanical characteristics leading to the predicted ones. 

Such two phases lead to a dense paradigm in a highly 

dimensional convex space and, as a result, it can (i) 

represent the possible relationships in the data availa-

ble; (ii) improve the predictive performance; and (iii) 

deal with a limited number of sparse data points [5].  

 
Figure 4 The schematic diagram of the integrated net-

work [5]. 

The schematic representation of the radial basis in-

tegrated network is presented in Figure 4. First, the 

FDM parameters represented symbolically by the vec-

tor (x=x1, x2, …, xn) are mapped using J RBF networks 

to each mechanical characteristic represented symbol-

ically by the parameter y. Since these networks have 

different numbers of RBFs and different parameters, 

such a structure facilitates capturing and simulating all 

the possible relationships in the data provided. Once 

these models are successfully developed and their pa-

rameters are optimized, their outputs represented by 

the vector (yp=yP1, yP1, …, yP1) are then mapped by an-

other RBF network to the output to lead to the final 

predicted one (𝑦𝑝
𝐹). Therefore, the mathematical rep-

resentation of these two phases can be as follows [31]: 

( ) ( ) ( ) ( ) ( ) ( )2 1 1 2

1 1

J I
F

p j j i i o o

j i

y      
= =

 
= + + 

 
 x x         (1) 

 

where 
i , λi and λo stand for the ith RBF and its weight 

and bias, respectively. The superscript (1) and (2) are 

used to distinguish the weights and bias used in the 

first phase from those used in the second one, respec-

tively. Such a mathematical representation presents 
F

py  as composition and superposition of the RBFs. 

This makes the function dense in the space and, thus, 

improves the predictive performance [5]. The RBF 

shown in Eq.(1) plays a significant role in the perfor-

mance of the integrated network. Various types of 

such a function can be employed such as polyhar-

monic spline and bump functions [32]. In this research 

work, the Gaussian function is employed. Such a func-

tion is commonly presented as follows [5]:  

( )
( )

2

2
exp

2

i

i

i

x 




 −
= − 

 
 

x                                     (2)     

where i and i symbolize the mean and standard de-

viation, respectively. In addition to the weight and bias 
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presented in Eq. (1), the mean and standard deviation 

values are commonly initialized randomly and, then, 

their optimal values are usually determined by an op-

timization algorithm embedded in the backpropaga-

tion network. In this research work, the scaled conju-

gate gradient (SCG) algorithm was employed. 

3.2. Particle Swarm based Fuzzy Logic Optimization  

Nature-inspired optimization paradigms that include, 

for instance, genetic and evolutionary algorithms have 

hitherto received a lot of interest. Such paradigms 

have been presented to deal with nonlinear, continu-

ous/discrete and multimodal optimization problems 

[27]. Among them all, PSO algorithms, as computa-

tional ones that imitate the motion of fishes and birds, 

can be considered to be the most common ones. This 

can be attributed to their effectiveness in estimating a 

global optimum and their computational efficiency in 

terms of fast convergence [33]. In general, PSO prob-

lems can be divided into single and multi-objective 

optimization problems. Many PSO paradigms have 

been utilized to deal with single objective problems. 

The good results obtained have led to extending them 

to solve multi-objective optimization problems [33]. 

In contrast to single objective optimization, solving 

multi-objective ones leads, in general, to a set of opti-

mal solutions known as Pareto optimal, non-inferior 

or non-dominated set. Defining a single optimal solu-

tion from such a set has been an active research topic. 

Although many paradigms including, for instance, 

weighted sum and ranking approaches, have been pro-

posed, defining a single optimal solution remains an 

attractive research topic [24]. Therefore, a new opti-

mization paradigm based on embedding fuzzy logic in 

the PSO model is presented to solve multi-objective 

optimization problems. This can be attributed to the 

fact that fuzzy logic can handle uncertainties in a nat-

ural and efficient way [24].  

In general, unconstrained multi-objective optimiza-

tion can be expressed as follows [34]: 

( )1 2( ) ( ), ( ),... ( )N
x

Min F x f x f x f x


=                 (3)                     

where x stands for an n-dimensional vector of decision 

variables defined in the decision space (Ω). In real-life 

cases, the values of the decision vector are subject to 

a number of equality and inequality constraints. This 

leads to a constrained multi-objective optimization 

model [34]. In order to find the Pareto set of optimal 

solutions using a PSO algorithm, a set of particles 

representing possible values of the decision variables 

(i.e., potential solutions) are initialized randomly in 

the search space, the so-called feasible space. Such 

particles are commonly described by their positions (xi
 

= xi1, xi2, …, xin) as well as their velocities (vi
 = vi1, vi2, 

…, vin). Based on the particles’ experience, the parti-

cles’ positions and velocities are revised during the 

search. Depending on their values at the tth iteration, 

the position and velocity of the ith particle for the next 

iteration (t+1) can therefore be determined as follows  

[35]: 

( ) ( )1

1 1 2 2

1 1

t t t t t t

ij ij ij ij gj ij

t t t

ij ij ij

v v c r p x c r p x

x x v

+

+ +

= + − + −

= +

               (4)              

where r1 and r2 stand for random numbers in the range 

from 0 to 1. In addition, c1 and c2 stand for the learning 

factors reflecting the impact of the local and the global 

optima, respectively. It is worth emphasising that the 

learning factors can be kept fixed or dynamically 

changed during the optimization process [24]. In this 

research work, and for simplicity and due to the inten-

sity of the integrated network calculations, the learn-

ing factors were kept constant at a value of 2. In order 

to keep the particles in the feasible solutions space, the 

velocities need to be in the predefined range of vmin to 

vmax. These equations are applicable for continuous de-

cision variables. For the discrete variables, the veloc-

ity needs to be converted to a probability vector ( t

ij
) 

using commonly the sigmoid function as follows [35]: 

1

1

1
t
ij

t

ij v
e


+−

=
+

                                          (5)                                                          

the t+1 position is one if a random number is less than 

such a probability vector, and it is zero if the random 

number is greater than or equal to such a vector [35]. 

Once the set of Pareto optimal solutions is found, a 

single one can be identified using fuzzy logic. Accord-

ing to predefined criteria, a set of clusters can be iden-

tified in the space. It is worth mentioning that many 

criteria can be utilized and there is no need for the 

number of criteria and the number of objective func-

tions to be equal. For a right-first-time framework, the 

predictive performance can be considered as a crite-

rion that can determine the set of the process parame-

ters that need to be used to obtain a set of predefined 

characteristics,  and can make sure that a good predic-

tive performance is achieved. Such a step is followed 
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by estimating the membership value (𝜇𝑖) for the ith so-

lution in the optimal set. The membership value can 

be determined using the Gaussian membership func-

tion as follows [36]: 

 
2

2

( )
exp

2

ix

i

P M




 − −
=    

                                       (6)                             

where 
ixP , M and σ represent the performance of the 

ith solution, mean and the standard deviation of each 

cluster, respectively. Once such values are determined 

for the predefined criteria, they are integrated for each 

defined solution by the well-known fuzzy operations 

that include, but not limited to, minimum and product. 

Such operations need to be used according to the opti-

mization problem investigated and the criteria identi-

fied.  

4. Model Implementation and Results  

The radial based integrated network, which briefly 

summarized in Section 3.1, was employed in a re-

verse-engineering structure to allow the right-first-

time manufacturing of 3D printed parts with the re-

quired mechanical characteristics using the optimiza-

tion algorithm presented in this paper. First and based 

on the experimental data, the radial based integrated 

networks with 10 RBF networks and an RBF network 

in the first and second phases, respectively, were de-

veloped to map the printing parameters summarized in 

Figure 1 to the three mechanical characteristics inves-

tigated, and, then, to predict these characteristics. The 

performance obtained for the tensile strength, as an 

example, is shown in Figure 5. In addition, the coeffi-

cient of determination (R2), the root mean square error 

(RMSE), the mean absolute percentage error (MAPE), 

scatter index and bias for all the networks are summa-

rized in Table 1, which shows good predictive perfor-

mances for all the mechanical characteristics. For 

comparison purposes, the RBF model, the artificial 

neural network (ANN) and fuzzy logic system (FLS) 

were also developed to the map the 3D printing to the 

three mechanical characteristics. For the ultimate ten-

sile strength, the overall performance measures in 

terms of [R2, RMSE] for the RBF, ANN and FLS are 

[0.82, 8.83], [0.78, 10.91] and [0.80, 9.49], respec-

tively. For elongation, the overall performance 

measures in terms of [R2, RMSE] for the RBF, ANN 

and FLS are [0.73, 5.48], [0.69, 6.4] and [0.74, 5.8], 

respectively. For micro-hardness, the overall 

performance measures in terms of [R2, RMSE] for the 

RBF, ANN and FLS are [0.68, 2.83], [0.68, 2.84] and 

[0.71, 2.78], respectively. These performance 

measures for the different models show that the radial 

based integrated network outperformed these well-

known data-based models.    

 

Figure 5 The radial based integrated network perfor-

mance for the strength with a 90% band [5]. 

Table 1 The performance measures for the integrated 

networks. 
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Since three mechanical properties were investi-

gated, a multi-objective PSO optimization model was 

employed. Therefore, the optimization mathematical 

model can be expressed as follows: 

min max

1

2

Minimize 1 , 1 , 1

Subject to :

3,4,...,9

0 if PEEK material isused

1 if PEKK material isused

0 if Cubic pattern isused

1 if Grid pattern isused

S E M
S E MP P P

S E M

D D D

j j j

J J J

x x x j

x

x

  

  

 
= − = − = − 

 

  =


= 



= 


  (7) 

where P  and D  represent the predicted and the de-

sired values of the mechanical characteristics, the su-

perscripts S, E and M stand for strength, elongation 

and micro-hardness. The parameter xj stands for the jth 

parameter of the position vector of the ith solution. The 

continuous set of constraints guarantees that the con-

tinuous FDM parameters are within the examined 

ranges as presented in  [5], whereas the discrete ones 

ensure that specific types of materials and patterns are 

used. Based on the experimental work, the mathemat-

ical model in (7), that needs to be used to produce 3D 

parts with an ultimate tensile strength value of 

100MPa, an elongation value of 22% and a micro-

hardness value of 30 can be expressed as follows: 

1

2

3

4

5

6

7

Minimize 1 , 1 , 1
100 22 30

Subject to :

0 if PEEK material isused

1 if PEKK material isused

0 if Cubic pattern isused

1 if Grid pattern isused

0.1 0.2

20 100

10 50

1 3

0 1

0

S E M
S E MP P PJ J J

x

x

x

x

x

x

x

   
= − = − = − 

 


= 



= 
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90

0.25 0.6

x

x

 

 

      (8) 

Such a mathematical model was solved using the 

algorithm presented in Section 3.2, where multi-objec-

tive PSO was first used to identify the Pareto optimal 

set by randomly initializing 300 particles for 300 iter-

ations. Figures 6-8 show some examples of the behav-

iours of these three objectives in the search area. It is 

apparent that these three objectives are in conflict. To 

illustrate, improving one of them may deteriorate the 

other objectives. For example, increasing the print 

speed and decreasing the infill density decrease the 

strength objective but increase the elongation and the 

micro-hardness objectives. It is also apparent that the 

behaviors of the objectives are not as continuous as it 

was expected. This can be attributed to the effect of 

the two discrete variables, namely, the type of materi-

als and the infill pattern, on these three objectives.  

Performance 

measures 

Output 

Ultimate ten-

sile strength 
Elongation 

Micro-

hardness 

R2 
Training set 0.94 0.93 0.90 

Testing set 0.91 0.91 0.91 

RMSE 
Training set 5.40 2.30 1.30 

Testing set 5.90 7.60 1.40 

MAPE 
Training set 0.19 0.13 0.06 

Testing set 0.20 0.15 0.06 

Scatter 

index 

Training set 0.20 0.19 0.81 

Testing set 0.20 0.21 0.83 

Bias  
Training set -0.05 0.001 0.06 

Testing set -0.08 0.001 -0.013 
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Figure 6 Examples of the 3D surfaces for the ulti-

mate tensile strength objective. 

 
Figure 7 Examples of the 3D surfaces for the elonga-

tion objective. 
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Figure 8 Examples of the 3D surfaces for the micro-

hardness objective. 

 

The number of optimal solutions in the Pareto op-

timal set is relatively large. Therefore, Figure 9 pre-

sents the Pareto set that was obtained by solving the 

model presented in Eq. (8). 

 

Figure 9 The Pareto solutions defined by the multi-ob-

jective PSO algorithm (the optimal solution obtained 

by fuzzy logic is highlighted by the red arrow). 

Once such a set was identified, the optimum point can 

be selected. Many criteria can be used to define such 

a point depending on the preferences and priorities of 

users. For the right-first-time model, the performance 

of the radial based integrated network in the area ex-

amined was considered to be the main criterion in se-

lecting the single optimal solution. Therefore, the 

FDM printing parameters and the error values result-

ing from the network were employed to identify the 

network’s performance in the space. Such a perfor-

mance can be grouped into three clusters, namely, Un-

satisfactory, Satisfactory and Excellent. For the 

strength, the performance of the radial based network 

in one of the space areas, as an example, is shown in 

Figure 10. Such a figure states that the performance of 

the radial based integrated network is satisfactory 

when the material is PEEK, infill pattern is grid, layer 

thickness is low, infill density is low, print speed is 

high, number of shells is high, cooling rate is low, 

layer orientation is medium and raster width is low.   

 

Figure 10 An example of the performance of the inte-

grated model in one of the space areas. 

For the Pareto optimal solutions identified in Figure 9, 
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the membership values were determined using Eq. 6. 

It is worth mentioning that each solution has three 

membership values for each cluster for the three me-

chanical characteristics. Such membership values can 

be integrated by employing various fuzzy operations. 

In this research work, the product operation was used. 

The solution of the Pareto set that has the maximum 

membership value was chosen to be the single optimal 

solution. Therefore, the FDM parameters that need to 

be used to produce 3D printed specimen with an ulti-

mate tensile strength value of 100MPa, an elongation 

value of 22% and a micro-hardness value of 30 are 

presented in Figure 9 for PEEK. This optimal point is 

marked by the arrow in Figure 9, where it is apparent 

that slight changes in these values may deteriorate at 

least one of the three objectives. The FDM parameters 

for such a point are listed in Figure 9. Three standard 

specimens were printed using the optimal set of pa-

rameters identified (or close value to them). The val-

ues of the ultimate tensile strength, elongation and mi-

crohardness of these specimens were experimentally 

measured. The average values of the ultimate tensile 

strength, elongation and microhardness are 95.4MPa, 

22.9 and 28.3, respectively. It is noticeable that the 

right-first-time model developed in this paper has the 

ability to identify the optimal set of parameters suc-

cessfully with an average error percentage of 4.7%.  

5. Right-First-Time Validation: Medical Implants 

Following Research Ethics Board approval and in or-

der to validate the right-first-time framework pro-

posed in this research work, three medical implants for 

a 21-year-old patient suffering from Hemifacial Mi-

crosomia, as shown in Figure 11, were produced using 

3D printing. Clinical examination revealed an under-

developed left side of the face and malformation of the 

left ear lobe without hearing problems. The zygomatic 

bone and the ramus of the mandible on the ipsilateral 

side were smaller in size compared to the ones on the 

right side. In addition, he has weak left-side facial 

muscles. It is worth mentioning that a mandibular dis-

traction osteogenesis surgery was performed for the 

patient a year ago leading to an incomplete correction 

of facial asymmetry. Therefore, implants are required 

in such a case. A CBCT x-ray was taken for the patient 

and represented in the Digital Imaging and Communi-

cations in Medicine (DICOM) format. Various 3D de-

sign programs, namely, Meshmixer®, Slicer® and 

Blender® were then employed to design patient-spe-

cific implants by mirroring the non-affected side. Such 

implants were printed by the FUNMAT HT 3D printer 

using PEEK, as a biocompatible material. The sur-

geons at The University of Jordan Hospital defined the 

values of the mechanical characteristics of the im-

plants (i.e., the ultimate tensile strength value of 

105MPa, an elongation value of 20% and a micro-

hardness value of 30).  

 

Figure 11 The patient scans and the two implants pro-

duced using the optimal set. 

The right-first-time structure was utilized to identify 

the FDM parameters that need to be used to print the 

implants to obtain the required values of the mechan-

ical characteristics. Therefore, the framework was im-

plemented as described in Section 4. The optimal set 

of the FDM parameters is summarized in Figure 11. 

By using these parameters (or close value to them), the 

implants were produced using PEEK. The three parts 

implants are shown in Figure 12. It is worth noting that 

medical-grade PEEK was printed to produce these im-

plants. Since these implants need to be attached to the 

zygomatic and ramus of mandible bones by Titanium 

screws, screw holes were predrilled in the implants at 

different locations as recommended by the surgeons. 

Such a step was followed by sterilizing the implants 

using autoclaving technique. Such sterilized implants 

were then implanted in the patients during a 4-hour 

operation, in which the patient was under general an-

esthetic. Figure 13 shows the implants attached to the 

zygomatic and ramus of mandible bones during the 

surgery.  
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Figure 12 The three customized implants printed for 

the patient. 

 

Figure 13 The implants attached to the zygomatic and 

ramus of mandible bones. 

6. Conclusion 

A right-first-time structure based on the integration 

of fuzzy logic and multi-objective particle swarm opti-

mization was proposed to reverse-engineer the radial 

based integrated network developed to represent fused 

deposition modelling (FDM). The proposed structure 

was successful in identifying the optimal set of the 

FDM parameters that need to be used to produce 3D 

printed parts with predefined values of the mechanical 

characteristics. It was noticeable that the radial based 

integrated network developed to represent the FDM 

process outperformed three well-known models (i.e., 

The radial based function, the artificial neural network 

and the fuzzy logic system). Likewise, the right-first-

time model developed in this paper was able to iden-

tify the optimal set of parameters successfully with an 

average error percentage of 4.7%. The proposed 

framework was validated by printing 3D medical im-

plants for a 21-year-old patient suffering from Hemifa-

cial Microsomia. In summary, the proposed framework 

is truly promising in the additive manufacturing indus-

try, and, as a result, it can have several advantages in 

terms of meeting the stringent regulations in some of its 

applications, producing cost-effective customized im-

plants/products, and minimizing time-to-market.      
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