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Abstract: 17 

This study presents a modelling framework to predict the flowability of various commonly 18 

used pharmaceutical powders. The flowability models were trained and validated on 86 19 

samples including single components and binary mixtures. Two modelling paradigms 20 

based on artificial intelligence (AI) namely, a radial basis function (RBF) and an integrated 21 

network were employed to model the flowability represented by the flow function coefficient 22 

(FFC) and the bulk density (RHOB). Both approaches were utilized to map the input 23 

parameters (i.e. particle size, shape descriptors and various materials and mixtures) to the 24 

flow properties. The input parameters of the blends were determined from the particle 25 

size and shape properties of the single components. The results clearly indicated that the 26 

integrated network outperformed the single RBF network in terms of the predictive 27 

performance and the generalization capabilities. For the integrated network, the 28 

coefficient of determination of the testing data set (not used for training the model) for 29 
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FFC was 𝑅2 = 0.93, reflecting an acceptable predictive power of this model. Since the 30 

flowability of the blends can be predicted from single component size and shape 31 

descriptors, the integrated network can assist formulators in selecting excipients and 32 

their concentrations to improve flowability with minimal experimental effort and 33 

material. The presented modelling approach can thus be employed instead of actual 34 

measurements throughout the process development stage resulting in the (i) minimization 35 

of the time required, (ii) exploration and examination of the design space, and (iii) 36 

minimization of material waste. 37 

Keywords: Integrated network; Pharmaceutical powder; Powder flow; Radial basis function. 38 

Abbreviations: RBF, radial basis function; IN, integrated network; FFC, flow function 39 

coefficient; PLS, partial least square; MCC, microcrystalline cellulose; DEM; discrete element 40 

method; PE, Polyethylene; PVC; Polyvinylchloride; PF; Phenylformaldheyde resin; SEM, 41 

scanning electron microscope; MISO; multi-input single output; RMSE, root mean square error   42 

 43 

1. Introduction  44 

Powder flow along with powder compression properties play a crucial role in the 45 

manufacturing of pharmaceutical tablets. Powder flow, in particular, is a critical issue of 46 

practical importance in those industries that primarily deal with granular materials such as the 47 

pharmaceutical industry, this being due to the fact that the flow behaviour can significantly 48 

affect the manufacturing efficiency and final product quality (e.g. dose uniformity) [1]. Poorly 49 

flowing powders can, for instance, lead to segregation during die filling before compaction [1]. 50 

Powders with good flowability characteristics (easy and free flowing powders) are therefore 51 

vital to prevent tableting issues and ensure a consistent quality of the final drug product [2]. In 52 

general, two main forces usually affect powder flow: (i) driving forces that consist of 53 
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gravitation, powder mass and the angle of inclination of the powder in relation to any bed; and 54 

(ii) dragging forces that usually include cohesion forces between similar surfaces, adhesion 55 

between unlike surfaces, water bridges and mechanical interlocking, and electrostatic forces 56 

[3-7]. Powders are, accordingly, classed to be free flowing when the driving forces are much 57 

more than the dragging ones, whereas poor powder flow occurs when the dragging forces are 58 

the primary forces in the powder bed [8] 59 

A considerable body of research has been devoted to the understanding of particle and 60 

granular flow properties and the factors that affect these properties using various 61 

pharmaceutical powders [2-3, 8]. For instance, it has been found that particle flow properties 62 

are significantly affected by particle size and shape for both brittle and elastic pharmaceutical 63 

powders [9]. Garg et al. (2018) studied two commonly used brittle pharmaceutical powders, 64 

namely, Calcium Phosphate and Dicalcium Phosphate. It was shown that the Calcium 65 

Phosphate with a relatively larger particle size displayed good flow properties and less 66 

cohesiveness when compared to the Dicalcium Phosphate with a relatively large particle size 67 

[9]. Fu et al. (2012) investigated three grades of Lactose powders. The obtained results 68 

indicated that the powder flow properties of the three grades were significantly affected by 69 

both the particle size and shape [10].  The flow of elastic powders such as Microcrystalline 70 

Cellulose (MCC) was also sensitive to the changes in the particle size and shape [11]. Hou and 71 

Sun (2008) examined the flow of eleven grades of MCC. The results demonstrated a decrease 72 

in the powder flow rate with a decrease in the particle size even though the chemical nature 73 

and particle morphology were similar. In addition, it was found that a change in the particle 74 

morphology towards a more spherical morphology led to better flow and less cohesiveness. 75 

Furthermore, surface modifications (e.g. using silicified MCC) also led to better flow properties 76 

[11].   77 
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Modelling and predicting the powder flow properties of a material are essential in many 78 

pharmaceutical, chemical and agricultural applications. In general, modelling paradigms can 79 

be classified as either mechanistic (or semi mechanistic) or data-driven models. For example, 80 

a data-driven model, partial least square (PLS) regression, was developed to linearly relate the 81 

particle size and shape distributions represented by multiple descriptors to the bulk powder 82 

flowability of various pharmaceutical materials [12]. Kachrimanis et al. (2003) implemented 83 

an artificial neural network, as a data-driven model, to map eight inputs to the powder flow rate 84 

in a circular orifice using three different pharmaceutical excipients [13]. In addition, the 85 

discrete element method (DEM), as a numerical method that is usually utilized to 86 

model/simulate the motion of a relatively large number of small particles, was utilized to 87 

simulate the flow behaviour of various powders [14-15]. Such a method allows one to model 88 

and consider the effect of equipment dynamics.  Furthermore, a kinematic flow model, as a 89 

semi-mechanistic paradigm, was also established to characterize the particles flow in two-90 

dimensional moving bed using three materials, namely, Polyethylene (PE), Polyvinylchloride 91 

(PVC) and Phenylformaldheyde (PF) resin [16]. The presented modelling paradigms (i.e. 92 

mechanistic- and data-driven models) have, in general, their limitations and strengths. On the 93 

one hand, mechanistic (or semi-mechanistic) based models can be implicitly built on some 94 

assumptions (e.g. monodisperse particle size distribution) that are not usually valid and may 95 

lead, as a result, to inaccurate results [17]. In addition, some of these models (e.g. DEM) are 96 

considered to be computationally taxing, particularly when more than billions of particles need 97 

to be considered, which is the actual case in powder flow [17]. Data-driven models, as the name 98 

indicates, rely significantly on the available data and its quality, which may include not only 99 

the number of the data points but also their distribution in the space under investigation [18]. 100 

As such, sparse and limited amount of data can decrease the performance of a data-driven 101 

models [18]. Modelling and predicting the powder flow behaviour is indeed a challenging task, 102 
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this being due to (i) large number of parameters (e.g. several particle size and shape factors) 103 

that affect the powder flow; (ii) a huge variety of excipients and APIs as well as mixtures 104 

of various excipients and API’s that may possess different flow characteristics to their 105 

parent materials. Huge efforts are being towards the understanding of powders and as 106 

such their predictions. Authors such as Wang et al. (2016) have successfully established 107 

mathematical correlations between cohesion and the flow function coefficient. Their 108 

analysis of 41 powders using a ring shear tester enabled the proposed method that 109 

augmented shear cell data analysis and significantly reduced the complexity of the shear 110 

cell data also [19]. Leung et al. 2017 further studied 1130 powders to test this correlation. 111 

The authors identified a near-perfect inverse correlation between the flow function 112 

coefficient and cohesion. It was concluded that improving the flowability of 113 

pharmaceutical powder requires an alteration in the interparticlute properties rather 114 

than altering the friction properties of pharmaceutical powders [20].   A big data 115 

approached was also used by Megarry et al. 2019 where the authors examined 3909 116 

historical experimental data from a shear cell. Their characterisation aided in 117 

establishing an operating space that can be used as a process flow map to guide 118 

formulators in future development [21]. 119 

In this research work, the ultimate aim is to develop a fast, cost effective and more 120 

accurate predictive model to represent the powder flow properties of various pharmaceutical 121 

powders and blends from single component data. This model can guide formulators to 122 

select excipients and their concentration that optimises the powder flowability. Firstly, a 123 

single radial basis function (RBF) network, as a relatively simple model, is implemented to 124 

map the particle size, shape and different blend ratios to the flow properties. The RBF 125 

network was, however, not able to describe the complex nature of powder flowability 126 

resulting in a poor prediction performance. This was addressed by developing an 127 
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integrated network based on a combination of RBF models. Since the integrated network 128 

can mathematically be represented as a combination of superposition and composition 129 

functions that are usually dense in a convex data space, it can circumvent the challenges 130 

posed by the single RBF network.  131 

2. Materials and Methods 132 

2.1. Materials 133 

Three pharmaceutically-relevant powder materials having different grades were 134 

investigated in this research paper. These powder materials are MCC, Dicalcium Phosphate 135 

Dehydrate and Lactose. Eight grades of MCC having different particle size and shape were 136 

supplied by JRS Pharma (UK). These grades are VivaPur® MCC PH101, VivaPur® MCC 137 

PH102, VivaPur® MCC PH105, VivaPur® MCC PH100, VivaPur® MCC PH200, VivaPur® 138 

MCC PH302, MCC Prosolv 50 and MCC Prosolv 90. Five Dicalcium Phosphate Dihydrate 139 

grades, namely, DI-CAFOS A12, DI-CAFOS A60, DI-CAFOS A150, DI- DI-CAFOS D14 140 

and DI-CAFOS D16, were supplied by Chemische Fabrik Budenheim KG (Germany). Seven 141 

Lactose Monohydrate grades were supplied by MEGGLE Group (Wasserburg, Germany). 142 

These are Flowlac 90, Flowlac 100, Granulac 70, Granulac 200, Inhalac 250, Inhalac 400 and 143 

Tablettose 80. In addition to being commonly used in the pharmaceutical industry, these 144 

powder materials were selected for this research work because of their different flow 145 

properties. The range of powder properties was further extended by mixing a combination of 146 

the different excipients at various ratios (3:1, 1:1, 1:3) as denoted in Table ??. Furthermore, 147 

such a range of pharmaceutical excipients and blends with different properties as utilized 148 

aids in the building of a robust flow model.  149 

2.2. Particle Size and Morphology Analysis  150 
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Electron micrographs of all the excipient grades were obtained using a scanning 151 

electron microscope (SEM) (Quanta FEG 250), which was operated at 20kV. The samples were 152 

mounted on a metal stub with double-sided adhesive tape and coated under vacuum with carbon 153 

in a nitrogen atmosphere. Several magnifications (i.e. ×100–500 and 1000) were used to 154 

observe the shape and surface topography of the particles.  155 

A QICPIC instrument (Sympatec, UK) was utilized to characterise the particles in terms 156 

of size and shape. In order to ensure that the dispersing line was clean and free from 157 

contaminants, two spoonful of sand (40-100 mesh) were passed through it prior to analysis. 158 

The primary sample container containing each excipient grade was thoroughly mixed by rolling 159 

and inverted by hand as well as mixed using a spatula. Before starting the measurement, the 160 

sample, approximately 2 g, was gently inverted and agitated to evenly disperse it and, thus, 161 

reduce loss of material in the vials. The M7 lens was selected for this study, where each 162 

measurement was repeated three times. The WINDOX software was utilized to perform the 163 

statistical analysis of the obtained measurements. The following particle size and shape 164 

properties were determined and used as input parameters for the models:  165 

• Particle size: 𝑫𝟏𝟎, 𝑫𝟓𝟎, 𝑫𝟗𝟎, 𝑫𝟒,𝟑 166 

• Aspect ratio: 𝑺𝟏𝟎 and 𝑺𝟓𝟎 167 

The particle size and shape properties of the binary blends were determined from 168 

the single component size and shape properties using a volume-based mixing rule. The 169 

physical property (𝒙mix,𝒊) is calculated from the single component properties 𝒙𝒊,𝒋 of 170 

material 𝒋 and property 𝒊 (more details about 𝒙𝒊,𝒋 are provided in section 2.4.1): 171 

𝒙mix,𝒊 = ∑ 𝒇𝝔,𝒋
𝑵
𝒋=𝟏 𝒙𝒊,𝒋           (1) 172 

 173 

with 𝑵 = 𝟐 as the number of components/materials. 𝒇𝝔,𝒊 is the volume based fraction 174 

considering particle true density, 𝝔𝒊, and calculated by 175 
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𝒇𝝔,𝒊 =
𝝔𝒊

∑ 𝝔𝒋
𝑵
𝒋=𝟏

𝒇𝒊.          (2) 176 

with 𝒇𝒊 as the weight based fraction of material 𝒊. 177 

2.2.1. True Density Measurements 178 

The true density of all the excipients, as detailed in section 2.1, was determined using a 179 

Micromeritics Accupyc II pycnometer 100 (Micromeritics, USA). The test was carried 180 

out using a multi-run system (10 runs) with a standard deviation of 0.005% for all the 181 

excipients. 182 

 183 

2.3. Flow Properties Measurements  184 

A Ring shear tester (RST-XS, Dietmar Schulze, Wolfenbuttel, Germany) was utilized 185 

to characterise the flow of the powders. The investigated powders also included a list of 66 186 

powder blends in the ratio of 3:1, 1:1 and 1:3 of MCC, DCP and Lactose grades as 187 

detailed in section 2.1. In making the blends for FFC determinations, the appropriate 188 

powders were weighted out in their desired ratios as %w/w and blended in a Turbula 189 

mixer for 10 minutes to ensure homogeneity. These powders were then immediately 190 

analysed. The cell was over-filled with the sample powder of interest and then a spatula was 191 

used to gently smoothen the surface. The weight of the shear cell and the sample was 192 

determined and recorded using the software provided. A pre-shear stress of 4,000 Pa was 193 

applied to erase the powder history. Normal loads applied were 25%, 38%, 51%, 65% and 25% 194 

of 4,000 Pa. In order to assess the powder flowability, the flow function coefficient (FFC) can 195 

be used. Such a coefficient can be expressed as follows [12]: 196 

c

u

FFC



=                                                                                                                                                       (1) 197 
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where c  is the consolidation stress that compacts the beds and u represents the unconfined 198 

yield stress that makes the powder bed to flow. The powder flowability can be classified into: 199 

(i) not flowable (𝐹𝐹𝐶 <  1); (ii) very cohesive powder (1 ≤ 𝐹𝐶𝐶 < 2); (iii) cohesive powder 200 

(2 ≤ 𝐹𝐶𝐶 < 4); (iv) easy flowing powder when the FFC value is in the range of (4 ≤ 𝐹𝐶𝐶 <201 

10); and (v) free flowing powder when the (𝐹𝐶𝐶 > 10) [12, 22].  202 

The bulk density of the materials (RHOB in kg/m3) was automatically determined by the 203 

ring shear tester (RST-XS, Dietmar Schulze, Wolfenbuttel, Germany). This parameter 204 

gives an indication of how these materials may pack and was thus used as one of the 205 

predicted output parameters for the model development.  206 

 207 

2.4. Radial Basis Function Network  208 

2.4.1. Model Development  209 

This section briefly introduces an RBF network that is used in this research to model 210 

the powder flow properties. Readers are referred to various books and research papers for more 211 

in-depth reading, in particular references [23-24]. The RBF network usually maps an (N + 3)-212 

dimensional input space (x) to a one-dimensional output space (𝑦𝑇). The full input space is 213 

defined as 214 

𝐱full = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6]                        215 

= [𝐷10 𝐷50 𝐷90 𝐷4,3 𝑆10 𝑆50]      (3) 216 

The output parameter is either 𝑦𝑇 = 𝐹𝐹𝐶 or 𝑦𝑇 = 𝑅𝐻𝑂𝐵. 217 

Such a network typically consists of an input layer, basis functions acting as a hidden 218 

layer and an output layer [17, 23]. Basis functions ( ( )i x ) are functions of the radial 219 
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Euclidian distance from a defined centre. A Gaussian function is a common selection for the 220 

basis function, which can be written as follows [23]: 221 

( )
2

( ) exp
2

i

i

i


 −

= − 
 

x μ
x

σ
                                                                                                                             (4)       222 

where iμ  and iσ  are the centre and the standard deviation of the ith function, respectively. 223 

The output of the mapping can then be expressed as a linear combination of these basis 224 

functions [23]: 225 

0

1

( ) ( )
I

i i

i

y w w
=

= +x x                                                                                                                               (5) 226 

where w0 and wi are the bias and the coefficient connecting the ith basis function to the output 227 

layer, respectively. The general structure of the RBF network is presented in Figure 1. The 228 

numbers of neurons in the input and output layers are determined by the process under 229 

investigation (i.e. the numbers of the inputs and outputs). In order to minimize the error of 230 

predicting each output, multi-input single output (MISO) model is commonly utilized. The 231 

optimal number of the basis functions is the one that achieves a trade-off between good training 232 

and good generalization capabilities. Thus, it corresponds to the minimum error usually 233 

measured via the root mean square error (RMSE).   234 

The RBF parameters (e.g. connecting coefficients and bias) are usually optimized via 235 

the use of the back-propagation network. In general, back-propagation is a supervised learning 236 

algorithm that aims to minimize the mean squared error between the target output and the 237 

predicted output [17, 23, 25].  Such an algorithm typically involves two phases, namely, 238 

forward and backward phases. The forward phase calculates the network predicted output 239 
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according to the inputs, whereas the backward phase adapts the network parameters (e.g. the 240 

connecting coefficients) based on the error performance via the use of an elicited optimization 241 

algorithm. Various optimization algorithms including, but not limited to, gradient descent, 242 

quasi-Newton optimisation, conjugate gradient, Levenberg-Marquardt and nature inspired 243 

optimization algorithms (e.g. Genetic algorithm), have been presented in the related literature 244 

[20, 25]. In this research paper, the scaled conjugate gradient (SCG) algorithm is utilized to 245 

optimize the RBF network parameters.  246 

2.5. Integrated Network 247 

2.5.1. Model Development  248 

The integrated network, as a data based model, relies on predicting the output via two 249 

phases. The structure of such a network for MISO is depicted in Figure 2. In the first phase, 250 

the N-dimensional input space (x) and the one-dimensional target space (yT) are utilized to 251 

develop and train M models having different structures (e.g. number of basis functions). Then, 252 

the predicted outputs (i.e. the predicted flow properties from each model) from these models 253 

(yP1, yP2… yPM) and the target output are used, in the second phase, to develop and train a single 254 

model leading to the final predicted output ( Py ) [26]. The idea of this integrated network is 255 

that the different model structures in the first phase can play a complementary role in 256 

representing the underlying patterns between the input parameters investigated and the 257 

flowability parameters (i.e. FCC and RHOB). Furthermore, training the model in two phases 258 

helps in extracting the associated knowledge from the available limited data [26].  259 

The predicted output of the integrated network can analytically be expressed as a 260 

combination of composition and superposition of the basis functions as follows [26]:  261 
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(2) (2)

0 0

1 1

( )
M K

P m m k k

m k

y w w x w w 
= =

 
= + + 

 
                                                                                    (6) 262 

 263 

where K is the number of the basis functions in each model in the first phase and M 264 

represents the number of the RBF models defined in the first phase. The rest of the 265 

parameters are as defined in Section 2.4, where the superscript number in Eq. 6 is utilized to 266 

distinguish the parameters used in Phase II from the ones used in Phase I. It has been proved 267 

that the superposition and composition functions are dense in a convex data space [27-28]. 268 

Thus, the function presented in Eq. 6 can minimize the difference between the predicted and 269 

the target outputs and can significantly improve the predictive performance [26]. The SCG 270 

algorithm is utilized with the backpropagation network to optimize the network parameters for 271 

the two phases.  272 

3. Results and Discussions 273 

3.1 Micrometric and flow properties  274 

The micrometric properties of the three powder materials used in this research study 275 

are summarized in Table 1. The powders in this table are also the powders used in making 276 

the blends for FFC and RHOB determination. The electron micrographs obtained by SEM 277 

for the different grades of MCC, DCP and Lactose are depicted in Figures 3, 4 and 5, 278 

respectively. As shown in Figure 3, the MCC microsphere 100 has, as expected, spherical 279 

particles with diameter values are in the range of approximately 150 µm to 300 µm. It is worth 280 

mentioning that a similar morphology can also be observed for the MCC microsphere 200, 281 

however, the particle diameter values are in the range of approximately 200 - 300 µm. These 282 

results were further confirmed by the QICPIC analysis. It was also observed that the MCC 283 

PH101 and MCC PH102 have elongated plate-like particles, with size in the range (40 – 284 
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350 µm). It is worth emphasising at this stage that the former has a smaller particle size when 285 

compared to the latter. A similar particle shape can also be observed for the MCC PH105 and 286 

MCC PH302. However, differences in the particle size are shown in Figure 3. For instance, 287 

particle size of the MCC PH105 is smaller than that of the MCC PH102 and larger than that of 288 

the MCC PH101, whereas the size of the MCC PH302 is larger than these grades. The silicified 289 

grades of MCC have also elongated plate-like particles. A look at Figure 1 and Table 1 suggests 290 

that the sphericity descriptors decrease in order: MCC PH200 > MCC PH100 >MCC PH302 > 291 

MCC prosolv 90 > MCC PH105 > MCC PH101 > MCC prosolv 50> MCC PH102. 292 

Different particle morphologies can also be noticed for the DCP grades, as presented in 293 

Figure 4. For example, the D160 and A150 grades show an aggregated plate-like morphology 294 

with relatively large particle size (i.e. D4,3 is approximately 160.3 µm). A similar morphology 295 

is noticeable for the D14 and A12 but the particle size is less than 100 µm. In contrast to these 296 

grades, the A60 grade has the most spherical particle shape with uniform size distribution (D4,3 297 

is approximately 76.12 µm). The sphericity descriptors for these grades are listed in Table 1. 298 

In Figure 5, it can be seen that Lactose shows versatile morphologies ranging from cubical to 299 

complete spherical particles. For instance, Flowlac 90 and Flowlac 100 have completely 300 

spherical particles with quite similar particle size distributions, as presented in Table 1. 301 

Granulac 70 and Granulac 200 show cubical morphology with different particle size (i.e.  302 

Granulac 70 has a larger particle size (D4,3=173.27 µm) when compared to Granulac 200 303 

(D4,3=58.90 µm).  304 

The FFC values of the various grades (MCC, DCP and Lactose) of the powder 305 

materials investigated are shown in Figure 6a-c. It is apparent that D160 has the best 306 

flowability, with an FFC value of approximately 65. Among the MCC and Lactose grades, 307 

MCC PH200 and Flowlac 100 have the best flowability with FFC values equal to 308 
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approximately 33 and 20, respectively. Statistical correlation analysis across the powders 309 

investigated was carried out between the size and shape descriptors of the powders investigated 310 

and the flowability represented by the FFC and RHOB. Reasonable linear correlation 311 

coefficient values among most of them are listed Table 2. Different correlation values can also 312 

be observed in Table 2. For instance the relationship between the D50 and the FFC is stronger 313 

than the relationship between D50 and the RHOB. In addition, the relationship between the D90 314 

and the FFC is a strong direct relationship (i.e. the correlation coefficient is positive), whereas 315 

the relationship between the D90 and the RHOB is a weak inverse one (i.e. the correlation 316 

coefficient is negative). The analysis of variance showed that the various materials have 317 

significant effects on the flow properties, where the p-values were less than 0.05. 318 

It was also interesting to note that of the true densities determined, the DCP 319 

samples had the highest values ranging from 2.38 – 2.92 kg/m3 whereas the MCC and 320 

Lactose grades had values ranging from 1.40 – 1.97 kg/m3 and 1.54 – 1.68 kg/m3 321 

respectively (Table 1). 322 

The blends for the MCC, DCP and Lactose grades displayed a range of FFC values 323 

which were correlated to their particle size descriptors (i.e. D4,3 values) (Figure 7a-e). It 324 

was noticeable that an increase or a decrease in one of the ratios of the blends (3:1, 1:1 or 325 

1:3) had a significant influence on the FFC values. This was correlated directly to the 326 

calculated particle size descriptors of the blend under investigation. This indicated that 327 

the development of the linear volume-based mixing rule (Eq. 1) for the blend in 328 

determining their particle size descriptors is possible and can be used to determine the 329 

particle size descriptor of any potential ratios which can be fed into a model and the FFC 330 

thus predicted. 331 

3.2. Radial Basis Function Network  332 
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An RBF model was employed to model and predict the flowability of the various 333 

pharmaceutical powders investigated. The experimental data were randomly classified into two 334 

sets: training set (60), which allows the RBF model to learn the input/output relationships, and 335 

testing set (26), by which the generalization capabilities of the developed RBF model are tested. 336 

In addition to the various powders and the different powder blends used, particle size 337 

represented by its descriptors (i.e. D10, D50, D90 and D4,3) and particle shape represented by its 338 

sphericity descriptors (i.e. S10 and S50) were considered as input variables, whereas the powder 339 

flow represented by the FFC and RHOB was considered as an output. The number of basis 340 

functions selected was the one that corresponded to the minimum RMSE values for both 341 

training and testing sets. For the FFC, Figure 8 shows the RBF performance for both the 342 

training and the testing data sets using 6 basis functions, with a RMSE (training, testing) = 343 

[2.90, 5.16]. The testing RMSE value is approximately twice the training RMSE value, 344 

which, at first glance, could be attributed to an over-training problem. However, it was 345 

noted that one of the FFC values in the testing set was larger than 60, whereas, in the 346 

training set, most of the values are less than 30, thus, an error residual of 5 is actually less 347 

than 10% of the target value. The coefficient of determination (R2) values for the training 348 

and testing sets are 0.80 and 0.79, respectively. The close R2 values are an evidence that the 349 

over-training problem was not the case in this work. In a similar manner, an RBF model 350 

was developed for the RHOB. The performance measures presented by the R2 (training, testing) 351 

and RMSE (training, testing) values are [0.78, 0.77] and [112, 151], respectively, as 352 

summarized in Table 3. The results obtained indicate that the RBF network cannot represent 353 

and accurately predict the flow properties. This can be attributed to the limited number of 354 

data points (i.e. powder samples) and to the so-called “curse of dimensionality”, which refers 355 

to the phenomenon that occurs when one deals with spaces of high dimensionality comprising 356 

of many input variables. 357 
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The predictive performance of the RBF model can, thus, be improved by reducing the 358 

dimensionality of the process (i.e. reducing the number of input variables). Therefore, an RBF 359 

model was developed using the materials and their mixtures, D50, D4,3 and S50. The model 360 

performance values for the FFC and the RHOB are R2 (training, testing) = [0.84, 0.85] and R2 361 

(training, testing) = [0.82, 0.83], respectively. The RMSE values for the FFC and the RHOB 362 

are [2.12, 4.72] and [109, 142], respectively, as listed in Table 3. These performance 363 

measures indicate that the RBF model developed using less inputs is superior to that of the 364 

RBF network developed using all the inputs, with an overall improvement of 7%. Although, 365 

such a model satisfactorily modelled the flow of the investigated powders, reducing the number 366 

of inputs may affect the generalization capabilities of the model. All the size descriptors should 367 

be included in the model, in order to take into account a multimodal or wide size distribution. 368 

Therefore, an integrated network is presented to capture the relationships between all the size 369 

and shape descriptors and the flow properties. 370 

3.3. Integrated Network 371 

In order to implement the integrated network, ten RBF networks, with different number 372 

of basis functions and different connecting coefficient values, and a single RBF one in the first 373 

and second phases, respectively, were developed (Table 3). For each model in the first phase, 374 

the data was randomly classified into two sets: training set (60) and testing set (26). For each 375 

flow property, the network parameters are listed in Table 3. It is worth emphasising at this 376 

stage that the number of data points (i.e. powder samples) in training and testing data sets  377 

were the same for all RBF networks but their distributions in the space under investigation 378 

were different. For this reason, these models can play a complementary role in representing the 379 

possible patterns by considering the different areas in the space under investigation. 380 

The integrated network performance measures for the FFC were R2 (training, testing) 381 

= [0.92, 0.93] and RMSE (training, testing) = [1.41, 1.92], as shown in Figure 9, while the 382 
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performance measures for the RHOB were R2 (training, testing) = [0.91, 0.90] and RMSE 383 

(training, testing) = [75, 93], as shown in Figure 10. The output predictions in Figures 8 and 384 

9 elucidate a satisfactory performance, where it was noticeable that most of the predicted values 385 

fitted properly within the 90% confidence interval. In addition, the prediction performance of 386 

the integrated network was superior to that of the single RBF network presented, with overall 387 

improvements of approximately 16% and 19% in R2 for the FFC and RHOB, respectively. 388 

These results prove the ability of the integrated network in handling the difficulties of 389 

modelling the powders flowability and in dealing with the limited number of data points, 390 

this being due to the dense function represented by the superposition and composition 391 

functions presented in Eq. 6. 392 

4. Conclusions  393 

Modelling and predicting the flow properties of powder materials are essential in many 394 

industries, in particular the pharmaceutical industry, this being due to the fact that powder flow 395 

behaviour can affect the manufacturing efficiency and determine the final product quality. In 396 

this research work, data-driven models were developed to predict the flow properties of 397 

various commonly used pharmaceutical powders and blends. Firstly, a radial basis function 398 

(RBF) network was utilized to map the size (i.e. D10, D50, D90 and D4,3) and shape (i.e. S10 and 399 

S50) descriptors to the flow properties represented by the flow function coefficient (FFC) and 400 

the bulk density (RHOB). The simple RBF network, however, was not able to capture the 401 

highly nonlinear input/output relationships and the high dimensionality of the flowability. An 402 

integrated network was thus implemented to model the flow properties. In such a structure, the 403 

output was predicted by training and modelling the acquired data in two consecutive stages. 404 

The integrated network was successfully able to (i) capture the relationships between the 405 

particle size and shape and the flow properties, (ii) deal with the high dimensionality of the 406 
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space under investigation, and (iii) predict the flow properties accurately. Furthermore, the 407 

integrated network thus outperformed the single RBF network in terms of the predictive 408 

performance and the generalization capabilities. Such a model has the ability to guide 409 

formulators in selecting excipients and their concentrations that can improve the 410 

flowability of a powder blend. Employing such a model can therefore reduce time and 411 

material waste. There is however a need to improve the interpretability of the input/output 412 

relationships, which can be achieved by incorporating fuzzy logic systems in the modelling 413 

structure.  414 
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