26 research outputs found

    Renal Failure Associated with APECED and Terminal 4q Deletion: Evidence of Autoimmune Nephropathy

    Get PDF
    Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autosomal recessive disorder caused by mutations in the autoimmune regulator gene (AIRE). Terminal 4q deletion is also a rare cytogenetic abnormality that causes a variable syndrome of dysmorphic features, mental retardation, growth retardation, and heart and limb defects. We report a 12-year-old Saudi boy with mucocutaneous candidiasis, hypoparathyroidism, and adrenocortical failure consistent with APECED. In addition, he has dysmorphic facial features, growth retardation, and severe global developmental delay. Patient had late development of chronic renal failure. The blastogenesis revealed depressed lymphocytes' response to Candida albicans at 38% when compared to control. Chromosome analysis of the patient revealed 46,XY,del(4)(q33). FISH using a 4p/4q subtelomere DNA probe assay confirmed the deletion of qter subtelomere on chromosome 4. Parental chromosomes were normal. The deleted array was further defined using array CGH. AIRE full gene sequencing revealed a homozygous mutation namely 845_846insC. Renal biopsy revealed chronic interstitial nephritis with advanced fibrosis. In addition, there was mesangial deposition of C3, C1q, and IgM. This is, to the best of our knowledge, the first paper showing evidence of autoimmune nephropathy by renal immunofluorescence in a patient with APECED and terminal 4q deletion

    A comprehensive introduction to the genetic basis of non-syndromic hearing loss in the Saudi Arabian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hearing loss is a clinically and genetically heterogeneous disorder. Mutations in the <it>DFNB1 </it>locus have been reported to be the most common cause of autosomal recessive non-syndromic hearing loss worldwide. Apart from <it>DFNB1</it>, many other loci and their underlying genes have also been identified and the basis of our study was to provide a comprehensive introduction to the delineation of the molecular basis of non-syndromic hearing loss in the Saudi Arabian population. This was performed by screening <it>DFNB1 </it>and to initiate prioritized linkage analysis or homozygosity mapping for a pilot number of families in which <it>DFNB1 </it>has been excluded.</p> <p>Methods</p> <p>Individuals from 130 families of Saudi Arabian tribal origin diagnosed with an autosomal recessive non-syndromic sensorineural hearing loss were screened for mutations at the <it>DFNB1 </it>locus by direct sequencing. If negative, genome wide linkage analysis or homozygosity mapping were performed using Affymetrix GeneChip<sup>® </sup>Human Mapping 250K/6.0 Arrays to identify regions containing any known-deafness causing genes that were subsequently sequenced.</p> <p>Results</p> <p>Our results strongly indicate that <it>DFNB1 </it>only accounts for 3% of non-syndromic hearing loss in the Saudi Arabian population of ethnic ancestry. Prioritized linkage analysis or homozygosity mapping in five separate families established that their hearing loss was caused by five different known-deafness causing genes thus confirming the genetic heterogeneity of this disorder in the kingdom.</p> <p>Conclusion</p> <p>The overall results of this study are highly suggestive that underlying molecular basis of autosomal recessive non-syndromic deafness in Saudi Arabia is very genetically heterogeneous. In addition, we report that the preliminary results indicate that there does not seem to be any common or more prevalent loci, genes or mutations in patients with autosomal recessive non-syndromic hearing loss in patients of Saudi Arabian tribal origin.</p

    EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy

    Get PDF
    Vici syndrome is a progressive neurodevelopmental multisystem disorder due to recessive mutations in the key autophagy gene EPG5. We report genetic, clinical, neuroradiological, and neuropathological features of 50 children from 30 families, as well as the neuronal phenotype of EPG5 knock-down in Drosophila melanogaster. We identified 39 different EPG5 mutations, most of them truncating and predicted to result in reduced EPG5 protein. Most mutations were private, but three recurrent mutations (p.Met2242Cysfs*5, p.Arg417*, and p.Gln336Arg) indicated possible founder effects. Presentation was mainly neonatal, with marked hypotonia and feeding difficulties. In addition to the five principal features (callosal agenesis, cataracts, hypopigmentation, cardiomyopathy, and immune dysfunction), we identified three equally consistent features (profound developmental delay, progressive microcephaly, and failure to thrive). The manifestation of all eight of these features has a specificity of 97%, and a sensitivity of 89% for the presence of an EPG5 mutation and will allow informed decisions about genetic testing. Clinical progression was relentless and many children died in infancy. Survival analysis demonstrated a median survival time of 24 months (95% confidence interval 0–49 months), with only a 10th of patients surviving to 5 years of age. Survival outcomes were significantly better in patients with compound heterozygous mutations (P = 0.046), as well as in patients with the recurrent p.Gln336Arg mutation. Acquired microcephaly and regression of skills in long-term survivors suggests a neurodegenerative component superimposed on the principal neurodevelopmental defect. Two-thirds of patients had a severe seizure disorder, placing EPG5 within the rapidly expanding group of genes associated with early-onset epileptic encephalopathies. Consistent neuroradiological features comprised structural abnormalities, in particular callosal agenesis and pontine hypoplasia, delayed myelination and, less frequently, thalamic signal intensity changes evolving over time. Typical muscle biopsy features included fibre size variability, central/internal nuclei, abnormal glycogen storage, presence of autophagic vacuoles and secondary mitochondrial abnormalities. Nerve biopsy performed in one case revealed subtotal absence of myelinated axons. Post-mortem examinations in three patients confirmed neurodevelopmental and neurodegenerative features and multisystem involvement. Finally, downregulation of epg5 (CG14299) in Drosophila resulted in autophagic abnormalities and progressive neurodegeneration. We conclude that EPG5-related Vici syndrome defines a novel group of neurodevelopmental disorders that should be considered in patients with suggestive features in whom mitochondrial, glycogen, or lysosomal storage disorders have been excluded. Neurological progression over time indicates an intriguing link between neurodevelopment and neurodegeneration, also supported by neurodegenerative features in epg5-deficient Drosophila, and recent implication of other autophagy regulators in late-onset neurodegenerative disease

    Characterizing the morbid genome of ciliopathies

    Get PDF
    Background Ciliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of their morbid genome, pleiotropy, and variable expressivity remains incomplete. Results We applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families, with phenotypes that span the entire ciliopathy spectrum. Likely causal mutations in previously described ciliopathy genes were identified in 85% (225/265) of the families, adding 32 novel alleles. Consistent with a fully penetrant model for these genes, we found no significant difference in their “mutation load” beyond the causal variants between our ciliopathy cohort and a control non-ciliopathy cohort. Genomic analysis of our cohort further identified mutations in a novel morbid gene TXNDC15, encoding a thiol isomerase, based on independent loss of function mutations in individuals with a consistent ciliopathy phenotype (Meckel-Gruber syndrome) and a functional effect of its deficiency on ciliary signaling. Our study also highlighted seven novel candidate genes (TRAPPC3, EXOC3L2, FAM98C, C17orf61, LRRCC1, NEK4, and CELSR2) some of which have established links to ciliogenesis. Finally, we show that the morbid genome of ciliopathies encompasses many founder mutations, the combined carrier frequency of which accounts for a high disease burden in the study population. Conclusions Our study increases our understanding of the morbid genome of ciliopathies. We also provide the strongest evidence, to date, in support of the classical Mendelian inheritance of Bardet-Biedl syndrome and other ciliopathies

    Mutations in TOP3A Cause a Bloom Syndrome-like Disorder

    Get PDF
    Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects’ cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis

    Loss-of-function mutations in UDP-Glucose 6-Dehydrogenase cause recessive developmental epileptic encephalopathy

    Get PDF
    AbstractDevelopmental epileptic encephalopathies are devastating disorders characterized by intractable epileptic seizures and developmental delay. Here, we report an allelic series of germline recessive mutations in UGDH in 36 cases from 25 families presenting with epileptic encephalopathy with developmental delay and hypotonia. UGDH encodes an oxidoreductase that converts UDP-glucose to UDP-glucuronic acid, a key component of specific proteoglycans and glycolipids. Consistent with being loss-of-function alleles, we show using patients’ primary fibroblasts and biochemical assays, that these mutations either impair UGDH stability, oligomerization, or enzymatic activity. In vitro, patient-derived cerebral organoids are smaller with a reduced number of proliferating neuronal progenitors while mutant ugdh zebrafish do not phenocopy the human disease. Our study defines UGDH as a key player for the production of extracellular matrix components that are essential for human brain development. Based on the incidence of variants observed, UGDH mutations are likely to be a frequent cause of recessive epileptic encephalopathy.</jats:p

    Accelerating Novel Candidate Gene Discovery in Neurogenetic Disorders via Whole-Exome Sequencing of Prescreened Multiplex Consanguineous Families

    Get PDF
    Our knowledge of disease genes in neurological disorders is incomplete. With the aim of closing this gap, we performed whole-exome sequencing on 143 multiplex consanguineous families in whom known disease genes had been excluded by autozygosity mapping and candidate gene analysis. This prescreening step led to the identification of 69 recessive genes not previously associated with disease, of which 33 are here described (SPDL1, TUBA3E, INO80, NID1, TSEN15, DMBX1, CLHC1, C12orf4, WDR93, ST7, MATN4, SEC24D, PCDHB4, PTPN23, TAF6, TBCK, FAM177A1, KIAA1109, MTSS1L, XIRP1, KCTD3, CHAF1B, ARV1, ISCA2, PTRH2, GEMIN4, MYOCD, PDPR, DPH1, NUP107, TMEM92, EPB41L4A, and FAM120AOS). We also encountered instances in which the phenotype departed significantly from the established clinical presentation of a known disease gene. Overall, a likely causal mutation was identified in >73% of our cases. This study contributes to the global effort toward a full compendium of disease genes affecting brain function

    ALG6-CDG : a recognizable phenotype with epilepsy, proximal muscle weakness, ataxia and behavioral and limb anomalies

    Get PDF
    Introduction: Alpha-1,3-glucosyltransferase congenital disorder of glycosylation (ALG6-CDG) is a congenital disorder of glycosylation. The original patients were described with hypotonia, developmental disability, epilepsy, and increased bleeding tendency. Methods: Based on Euroglycan database registration, we approached referring clinicians and collected comprehensive data on 41 patients. Results: We found hypotonia and developmental delay in all ALG6-CDG patients and epilepsy, ataxia, proximal muscle weakness, and, in the majority of cases, failure to thrive. Nine patients developed intractable seizures. Coagulation anomalies were present i
    corecore