5 research outputs found

    Economic and Technical Analysis of Distributed Generation Connection: A Wind Farm Case Study

    Get PDF
    This study has been completed for the proposed construction of a wind farm to supply an industrial factory in the north east of the England. The study assessed the potential benefits of changing the operation philosophy of distribution network and embedded generation dealing with factory owner aspects, which are to reduce the electricity bills, reduce the interruption in the network, gain revenue by selling the electricity for the supply company and gain green certificate renewable obligation. The following study presents a comprehensive review of the critical factors and considerations analyzed for installing an embedded generation (Wind Farm) at the factory site. Furthermore, the feasibility study in this report includes factory site description and wind data, design study and wind farm sizing, and economic study

    CFD Model of Shell-and-Tube Latent Heat Thermal Storage Unit Using Paraffin as a PCM

    Get PDF
    This chapter validates the capability of CFD modelling technique to accurately describe processes in the thermal storage system with the PCM. For validation purposes, CFD modelling using FLUENT ANSYS was conducted and the predicted results were compared with the experimental and numerical data from the literature. The comparison between experimental and numerical results was carried out in terms of the temperature distributions and average volume of the PCM liquid fraction. Additionally, the detailed parametric study of the storage system with the PCM was performed and results obtained were discussed with dimensional correlations for the Nusselt number being proposed to be used in the designing process. Finally, a correlation was developed to estimate the total melting time at the thermal storage system

    Compact solar thermal energy storage systems using phase change materials

    Get PDF
    The present research explores numerically and experimentally the process of melting and solidification of Phase Change Materials (PCM) in a latent heat thermal energy storage system (LHTESS). Further, the study will investigate various methods of intensification of heat transfer in such materials by means of metallic fins, filling particles or nanoparticles and by choosing the optimal system geometry for a rapid development of free convection flows during the melting process. The study includes three main parts. First, 3D CFD modelling was performed for the melting performance of a shell-and-tube thermal storage system with n-Octadecane as a PCM. The predicted model was in very good agreement with experimental data published in open literature. A series of numerical calculations were then undertaken to investigate the effect of nanoparticles on the heat transfer process. Dimensionless heat transfer correlations were derived for the system with Pure PCM and PCM mixed with nano-particles. In the second part of this study the experimental studies were carried out in order to investigate the performance of the laboratory thermal storage system with paraffin as the PCM. The thermal storage system was connected to evacuated tube solar collectors and its performance was evaluated in various conditions. 3D CFD model of the system was developed and numerical simulations were run for constant heat source conditions. Computational results were compared with experimental data obtained on the test rig at Northumbria University. Comparison revealed that the developed CFD model is capable to describe process of heat transfer in the system with high accuracy and therefore can be used with high confidence for modelling further cases. Finally, 3D CFD model was developed to predict the transient behaviour of a latent heat thermal energy storage system (LHTESS) in the form of a rectangular container with a central horizontal pipe surrounded by paraffin as PCM (melting temperature is 60 oC). Water was used as a heat transfer fluid (HTF). The enhancement of heat transfer in specific geometries by using external longitudinal fins on the tube and metallic porous matrix were numerically investigated. The influence of the number of fins and porosity of the matrix on the temperature distribution, melting process, melting time and natural convection phenomena were studied. Dimensionless heat transfer correlations were derived for calculation of the Nusselt number as function of Fourier, Stefan and Rayleigh numbers. These correlations to be used in the further designing process of similar thermal storage units at Northumbria Universit

    Methods of heat transfer intensification in PCM thermal storage systems: Review paper

    No full text
    This paper presents a comprehensive review of significant studies that are relevant to thermal energy storage technologies using phase change materials (PCMs). The review focuses on the techniques applied to enhance the performance of thermal storage systems and the methods used to analyse the heat transfer problems in PCMs. In addition, this paper reviews the published results and discussions on the heat transfer intensification methods including application of fins, filling materials, nano-fluids, nano-particles, microencapsulation and the thermal conductivity enhancement method. Furthermore, the experimental and mathematical methods to enhance the thermal conductivity of PCMs are summarised, and the methods used to determine the nanofluid dynamic viscosity in recent investigations are also listed and discussed. The focus of this review is to provide a solid basis for the identification of the optimal design for the various heat transfer applications using PCM

    Methods of heat transfer intensification in PCM thermal storage systems: Review paper

    No full text
    corecore