7 research outputs found
Exploiting One-Dimensional Convolutional Neural Networks for Joint Channel Estimation and Signal Detection in Non-Orthogonal Multiple Access Systems
الوصول المتعدد غير المتعامد (NOMA) هو تقنية واعدة للجيل الخامس و الاجيال المستقبلية من شبكات الاتصالات اللاسلكية ، مما يزيد من كفاءة الطيف ويقلل من زمن الوصول. ومع ذلك، يمكن أن يتأثر أداء NOMA بإلغاء التداخل المتتالي غير المثالي (SIC). تم اقتراح تقنيات الذكاء الاصطناعي للمساعدة في الكشف عن الإشارات وتقدير القنوات في أنظمة NOMA. في هذه الدراسة ، نقترح نهجًا جديدًا باستخدام الشبكات العصبية التلافيفية أحادية البعد (1D CNN) لمعالجة قيود المحددة لأنظمة الذكاء الاصطناعي الحالية. على عكس طرق الذكاء الاصطناعي الأخرى التي تعتمد على تبعيات الوقت لتصنيف البيانات ، تستخدم 1D CNN طبقة التفاف أحادية البعد لاستخراج الميزات، مما يؤدي إلى موثوقية عالية. تظهر نتائج المحاكاة أن طريقتنا المقترحة تتفوق على تقنيات التعلم العميق الحالية من حيث معدل الخطأ في العينة (SER). علاوة على ذلك ، يؤدي تقليل معلمة البادئة الدورية (CP) إلى زيادة التداخل بين العينات (ISI) ، ولكن طريقتنا لا تزال تحقق تحسينًا بمقدار 6 ديسيبل على النهوج في (11،13) وتقنيات تقدير القنوات التقليدية مثل الاحتمال الأقصى (ML) عند إشارة منخفضة إلى- نسب الضوضاء (SNR).Non-Orthogonal Multiple Access (NOMA) is a promising technology for the fifth and future generations of wireless communication networks, which increases spectral efficiency and reduces latency. However, NOMA performance can be affected by imperfect successive interference cancellation (SIC). Deep learning techniques have been proposed to aid in signal detection and channel estimation in NOMA systems. In this study, we propose a new approach using one-dimensional convolutional neural networks (1D CNN) to address the limitations of current deep learning methods. Unlike other deep learning methods that rely on time dependencies for data classification, 1D CNN uses a 1-dimensional convolution layer for feature extraction, resulting in high reliability. Simulation results demonstrate that our proposed method outperforms existing deep learning techniques in terms of sample error rate (SER) by 7dB. Moreover, reducing the cyclic prefix (CP) parameter increases inter-sample interference (ISI), but our method still achieves a 6 dB improvement over approaches in [11,13] and traditional channel estimation techniques like maximum likelihood (ML) at low signal-to-noise ratios (SNR)
Detection of electrocardiogram QRS complex based on modified adaptive threshold
It is essential for medical diagnoses to analyze Electrocardiogram (ECG signal). The core of this analysis is to detect the QRS complex. A modified approach is suggested in this work for QRS detection of ECG signals using existing database of arrhythmias. The proposed approach starts with the same steps of previous approaches by filtering the ECG. The filtered signal is then fed to a differentiator to enhance the signal. The modified adaptive threshold method which is suggested in this work, is used to detect QRS complex. This method uses a new approach for adapting threshold level, which is based on statistical analysis of the signal. Forty-eight records from an existing arrhythmia database have been tested using the modified method. The result of the proposed method shows the high performance metrics with sensitivity of 99.62% and a positive predictivity of 99.88% for QRS complex detection
Sistemas de protección catódica: enfoques y desafíos abiertos
El sistema de protección catódica (CPS) se utiliza en una variedad de estructuras para prevenir la corrosión en cascos de barcos, tuberías y tanques de almacenamiento subterráneos. Las tuberías de transmisión se extienden a lo largo de grandes distancias que pueden extenderse por cientos de kilómetros, el problema de la corrosión existe en tuberías que transportan líquidos como aceite, petróleo o agua, así como en tuberías que transportan gases. La corrosión conduce a fugas al entorno circundante, causando contaminación. La inteligencia artificial (IA) se utiliza en la gestión de riesgos para determinar la posibilidad de tasas de crecimiento de la corrosión, considerando todos los determinantes y factores que contribuyen a la corrosión, incluidas las corrientes alternas, las propiedades del suelo, las condiciones ambientales y las características geográficas. Según la investigación, hay dos formas de mejorar el rendimiento de los sistemas de protección catódica: una es diseñar la protección catódica de formas no convencionales basadas en diferentes algoritmos y métodos que muestran superioridad sobre el método tradicional para determinar el número y la ubicación de los ánodos, y la otra es monitorear continuamente las condiciones ambientales que rodean la estructura a proteger, que incluyen el suelo y el clima. Se realizará un estudio para determinar los factores más efectivos en la protección de las tuberías y otros factores para determinar la energía requerida de un método eficiente
Fog computing framework for internet of things applications
Within the Internet of Things (IoT) era, a big volume of data is generated/gathered every second from billions of connected devices. The current network paradigm, which relies on centralised data centres (a.k.a. Cloud computing), becomes impractical solution for IoT data storing and processing due to the long distance between the data source (e.g., sensors) and designated data centres. In other words, by the time the data reaches a far data centre, the importance of the data would be vanished. Therefore, the network topologies have been evolved to permit data processing and storage at the edge of the network, introducing what so-called "Fog computing". The later will obviously lead to improvements in quality of service (QoS) via processing and responding quickly and efficiently to varieties of data processing requests. Therefore, understanding Fog computing architecture and its role in improving QoS is a paramount research topic. In this research, we are proposing a Fog computing architecture and framework to improve QoS for IoT applications. Proposed system supports cooperation among Fog nodes in a given location, in order to permit data processing in a shared mode, hence satisfies QoS and serves largest number of service requests. The proposed framework could have the potential in achieving sustainable network paradigm and highlights significant benefits of Fog computing into the computing ecosystem