33 research outputs found

    Respiratory Infection in Institutions during Early Stages of Pandemic (H1N1) 2009, Canada

    Get PDF
    Outbreaks of respiratory infection in institutions in Ontario, Canada were studied from April 20 to June 12, 2009, during the early stages of the emergence of influenza A pandemic (H1N1) 2009. Despite widespread presence of influenza in the general population, only 2 of 83 outbreaks evaluated by molecular methods were associated with pandemic (H1N1) 2009

    Guidance on the Selection of Appropriate Indicators for Quantification of Antimicrobial Usage in Humans and Animals

    Get PDF
    An increasing variety of indicators of antimicrobial usage has become available in human and veterinary medicine, with no consensus on the most appropriate indicators to be used. The objective of this review is therefore to provide guidance on the selection of indicators, intended for those aiming to quantify antimicrobial usage based on sales, deliveries or reimbursement data. Depending on the study objective, different requirements apply to antimicrobial usage quantification in terms of resolution, comprehensiveness, stability over time, ability to assess exposure and comparability. If the aim is to monitor antimicrobial usage trends, it is crucial to use a robust quantification system that allows stability over time in terms of required data and provided output; to compare usage between different species or countries, comparability must be ensured between the different populations. If data are used for benchmarking, the system comprehensiveness is particularly crucial, while data collected to study the association between usage and resistance should express the exposure level and duration as a measurement of the exerted selection pressure. Antimicrobial usage is generally described as the number of technical units consumed normalized by the population at risk of being treated in a defined period. The technical units vary from number of packages to number of individuals treated daily by adding different levels of complexity such as daily dose or weight at treatment. These technical units are then related to a description of the population at risk, based either on biomass or number of individuals. Conventions and assumptions are needed for all of these calculation steps. However, there is a clear lack of standardization, resulting in poor transparency and comparability. By combining study requirements with available approaches to quantify antimicrobial usage, we provide suggestions on the most appropriate indicators and data sources to be used for a given study objective

    Global Mortality Estimates for the 2009 Influenza Pandemic from the GLaMOR Project: A Modeling Study

    Get PDF
    Background: Assessing the mortality impact of the 2009 influenza A H1N1 virus (H1N1pdm09) is essential for optimizing public health responses to future pandemics. The World Health Organization reported 18,631 laboratory-confirmed pandemic deaths, but the total pandemic mortality burden was substantially higher. We estimated the 2009 pandemic mortality burden through statistical modeling of mortality data from multiple countries. Methods and Findings: We obtained weekly virology and underlying cause-of-death mortality time series for 2005–2009 for 20 countries covering ~35% of the world population. We applied a multivariate linear regression model to estimate pandemic respiratory mortality in each collaborating country. We then used these results plus ten country indicators in a multiple imputation model to project the mortality burden in all world countries. Between 123,000 and 203,000 pandemic respiratory deaths were estimated globally for the last 9 mo of 2009. The majority (62%–85%) were attributed to persons under 65 y of age. We observed a striking regional heterogeneity, with almost 20-fold higher mortality in some countries in the Americas than in Europe. The model attributed 148,000–249,000 respiratory deaths to influenza in an average pre-pandemic season, with only 19% in person

    Development of core competencies for field veterinary epidemiology training programs

    Get PDF
    A workforce with the adequate field epidemiology knowledge, skills and abilities is the foundation of a strong and effective animal health system. Field epidemiology training is conducted in several countries to meet the increased global demand for such a workforce. However, core competencies for field veterinary epidemiology have not been identified and agreed upon globally, leading to the development of different training curricula. Having a set of agreed core competencies can harmonize field veterinary epidemiology training. The Food and Agriculture Organization of the United Nations (FAO) initiated a collective, iterative, and participative process to achieve this and organized two expert consultative workshops in 2018 to develop core competencies for field veterinary epidemiology at the frontline and intermediate levels. Based on these expert discussions, 13 competencies were identified for the frontline and intermediate levels. These competencies were organized into three domains: epidemiological surveillance and studies; field investigation, preparedness and response; and One Health, communication, ethics and professionalism. These competencies can be used to facilitate the development of field epidemiology training curricula for veterinarians, adapted to country training needs, or customized for training other close disciplines. The competencies can also be useful for mentors and employers to monitor and evaluate the progress of their mentees, or to guide the selection process during the recruitment of new staff

    Development and Validation of a Standardized Tool for Prioritization of Information Sources

    No full text
    Purpose: To validate the utility and effectiveness of a standardized tool for prioritization of information sources for early detection of diseases. Methods: The tool was developed with input from diverse public health experts garnered through survey. Ten raters used the tool to evaluate ten information sources and reliability among raters was computed. The Proc mixed procedure with random effect statement and SAS Macros were used to compute multiple raters’ Fleiss Kappa agreement and Kendall's Coefficient of Concordance. Results: Ten disparate information sources evaluated obtained the following composite scores: ProMed 91%; WAHID 90%; Eurosurv 87%; MediSys 85%; SciDaily 84%; EurekAl 83%; CSHB 78%; GermTrax 75%; Google 74%; and CBC 70%. A Fleiss Kappa agreement of 50.7% was obtained for ten information sources and 72.5% for a sub-set of five sources rated, which is substantial agreement validating the utility and effectiveness of the tool. Conclusion: This study validated the utility and effectiveness of a standardized criteria tool developed to prioritize information sources. The new tool was used to identify five information sources suited for use by the KIWI system in the CEZD-IIR project to improve surveillance of infectious diseases. The tool can be generalized to situations when prioritization of numerous information sources is necessary

    Development and Validation of a Standardized Tool for Prioritization of Information Sources

    Get PDF
    Purpose: To validate the utility and effectiveness of a standardized tool for prioritization of information sources for early detection of diseases.Methods: The tool was developed with input from diverse public health experts garnered through survey. Ten raters used the tool to evaluate ten information sources and reliability among raters was computed. The Proc mixed procedure with random effect statement and SAS Macros were used to compute multiple raters’ Fleiss Kappa agreement and Kendall's Coefficient of Concordance.  Results: Ten disparate information sources evaluated obtained the following composite scores: ProMed 91%; WAHID 90%; Eurosurv 87%; MediSys 85%; SciDaily 84%; EurekAl 83%; CSHB 78%; GermTrax 75%; Google 74%; and CBC 70%. A Fleiss Kappa agreement of 50.7% was obtained for ten information sources and 72.5% for a sub-set of five sources rated, which is substantial agreement validating the utility and effectiveness of the tool.  Conclusion: This study validated the utility and effectiveness of the standardized criteria tool and was used to identify five information sources suited for use by the KIWI system for a pilot project focusing on emerging and zoonotic diseases. The tool can be used in prioritizing a plethora of information sources to improve early detection of diseases.
    corecore