41 research outputs found
Optical properties of BiTeBr and BiTeCl
We present a comparative study of the optical properties - reflectance,
transmission and optical conductivity - and Raman spectra of two layered
bismuth-tellurohalides BiTeBr and BiTeCl at 300 K and 5 K, for light polarized
in the a-b planes. Despite different space groups, the optical properties of
the two compounds are very similar. Both materials are doped semiconductors,
with the absorption edge above the optical gap which is lower in BiTeBr (0.62
eV) than in BiTeCl (0.77 eV). The same Rashba splitting is observed in the two
materials. A non-Drude free carrier contribution in the optical conductivity,
as well as three Raman and two infrared phonon modes, are observed in each
compound. There is a dramatic difference in the highest infrared phonon
intensity for the two compounds, and a difference in the doping levels. Aspects
of the strong electron-phonon interaction are identified. Several interband
transitions are assigned, among them the low-lying absorption which has
the same value 0.25 eV in both compounds, and is caused by the Rashba spin
splitting of the conduction band. An additional weak transition is found in
BiTeCl, caused by the lower crystal symmetry.Comment: Accepted in PR
From Mott state to superconductivity in-1T-TaS
The search for the coexistence between superconductivity and other collective electronic states in many instances promoted the discovery of novel states of matter. The manner in which the different types of electronic order combine remains an ongoing puzzle. 1T-TaS is a layered material, and the only transition-metal dichalcogenide (TMD) known to develop the Mott phase. Here, we show the appearance of a series of low-temperature electronic states in 1T-TaS with pressure: the Mott phase melts into a textured charge-density wave (CDW); superconductivity develops within the CDW state, and survives to very high pressures, insensitive to subsequent disappearance of the CDW state and, surprisingly, also the strong changes in the normal state. This is also the first reported case of superconductivity in a pristine 1T-TMD compound. We demonstrate that superconductivity first develops within the state marked by a commensurability-driven, Coulombically frustrated, electronic phase separation
Magneto-optical signature of massless Kane electrons in Cd3As2
We report on optical reflectivity experiments performed on Cd3As2 over a
broad range of photon energies and magnetic fields. The observed response
clearly indicates the presence of 3D massless charge carriers. The specific
cyclotron resonance absorption in the quantum limit implies that we are probing
massless Kane electrons rather than symmetry-protected 3D Dirac particles. The
latter may appear at a smaller energy scale and are not directly observed in
our infrared experiments.Comment: 5 pages, 4 figures + supplementary materials (17 pages), to be
published in Phys. Rev. Let
Infrared and Raman spectroscopy measurements of a transition in the crystal structure and a closing of the energy gap of BiTeI under pressure
BiTeI is a giant Rashba spin splitting system, in which a non-centro
symmetric topological phase has recently been suggested to appear under high
pressure. We investigated the optical properties of this compound, reflectivity
and transmission, under pressures up to GPa. The gap feature in the
optical conductivity vanishes above GPa and does not reappear up to
at least GPa. The plasma edge, associated with intrinsically doped charge
carriers, is smeared out through a phase transition at GPa. Using high
pressure Raman spectroscopy, we follow the vibrational modes of BiTeI,
providing additional clear evidence that the transition at 9 GPa involves a
change of crystal structure. This change of crystal structure possibly inhibits
the high-pressure topological phase from occurring.Comment: 11 pages, 7 figures, with Supplemental Material, Accepted by PRL Dec
17, 201
EuCdAs: a magnetic semiconductor
EuCdAs is now widely accepted as a topological semimetal in which a
Weyl phase is induced by an external magnetic field. We challenge this view
through firm experimental evidence using a combination of electronic transport,
optical spectroscopy and excited-state photoemission spectroscopy. We show that
the EuCdAs is in fact a semiconductor with a gap of 0.77 eV. We show
that the externally applied magnetic field has a profound impact on the
electronic band structure of this system. This is manifested by a huge decrease
of the observed band gap, as large as 125~meV at 2~T, and consequently, by a
giant redshift of the interband absorption edge. However, the semiconductor
nature of the material remains preserved. EuCdAs is therefore a
magnetic semiconductor rather than a Dirac or Weyl semimetal, as suggested by
{\em ab initio} computations carried out within the local spin-density
approximation.Comment: Accepted for publication in Physical Review Letter
BaVS probed by V L edge X-ray absorption spectroscopy
Polarization dependent vanadium L edge X-ray absorption spectra of BaVS
single crystals are measured in the four phases of the compound. The difference
between signals with the polarization \textbf{E}\textbf{c} and
\textbf{E}\textbf{c} (linear dichroism) changes with temperature.
Besides increasing intensity of one of the maxima, a new structure appears in
the pre-edge region below the metal-insulator transition. More careful
examination brings to light that the changes start already with pretransitional
charge density wave fluctuations. Simple symmetry analysis suggests that the
effect is related to rearrangements in and states, and is
compatible with the formation of four inequivalent V sites along the V-S chain.Comment: 6 pages, 6 figure
Spin-Density-Wave Gap with Dirac Nodes and Two-Magnon Raman Scattering in BaFe2As2
Raman selection rules for electronic and magnetic excitations in BaFe2As2
were theoretically investigated and applied them to the separate detection of
the nodal and anti-nodal gap excitations at the spin density wave (SDW)
transition and the separate detection of the nearest and the next nearest
neighbor exchange interaction energies. The SDW gap has Dirac nodes, because
many orbitals participate in the electronic states near the Fermi energy. Using
a two-orbital band model the electronic excitations near the Dirac node and the
anti-node are found to have different symmetries. Applying the symmetry
difference to Raman scattering the nodal and anti-nodal electronic excitations
are separately obtained. The low-energy spectra from the anti-nodal region have
critical fluctuation just above TSDW and change into the gap structure by the
first order transition at TSDW, while those from the nodal region gradually
change into the SDW state. The selection rule for two-magnon scattering from
the stripe spin structure was obtained. Applying it to the two-magnon Raman
spectra it is found that the magnetic exchange interaction energies are not
presented by the short-range superexchange model, but the second derivative of
the total energy of the stripe spin structure with respect to the moment
directions. The selection rule and the peak energy are expressed by the
two-magnon scattering process in an insulator, but the large spectral weight
above twice the maximum spin wave energy is difficult to explain by the decayed
spin wave. It may be explained by the electronic scattering of itinerant
carriers with the magnetic self-energy in the localized spin picture or the
particle-hole excitation model in the itinerant spin picture. The magnetic
scattering spectra are compared to the insulating and metallic cuprate
superconductors whose spins are believed to be localized.Comment: 38 pages, 11 figure
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Forster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins
Akrap N, Seidel T, Barisas BG. Forster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins. ANALYTICAL BIOCHEMISTRY. 2010;402(1):105-106.We present, for the red fluorescent protein mCherry acting as both fluorescence resonant energy transfer (FRET) donor and acceptor, Forster critical distance (r(0)) values with five important visible fluorescent protein (VFP) variants as well as with itself. The pair EYFP-mCherry exhibits an r(0) of 5.66 nm, equaling or exceeding any combination of VFPs reported previously. Moreover, mCherry should be an excellent chromophore for homo-FRET with an r(0) of 5.10 nm for energy transfer between two mCherry moieties. Finally, mCherry exhibits higher r(0) values than does DsRed. These characteristics, combined with mCherry's rapid folding and excellent spectral properties, suggest that mCherry constitutes a valuable long-wavelength hetero-FRET acceptor and probe for homo-FRET experiments. (C) 2010 Elsevier Inc. All rights reserved