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1. DFT AND GW CALCULATIONS
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FIG. 1. Gap as a function of pressure for GGA and GW calculations.

The band structures of BiTeI under pressure were first calculated from density functional

theory (DFT) within the generalized gradient approximation (GGA) as implemented in

the QUANTUM-ESPRESSO package [1]. Spin-orbit effects were accounted for using the

fully relativistic norm-conserving pseudopotentials acting on valence electron wavefunctions

represented in the two-component spinor form [2].

The atomic positions and cell shape were relaxed at constant volume for a range of volume

between 0.85V0 and 1.15V0, where V0 is the experimental unit cell volume (V0 = 111.76Å3).

The pressure was obtained by fitting the Murnaghan equation of state to the energy vs.

volume curve. The gap as a function of the pressure is shown on Fig. 1. A closing of the

gap is expected around PC = 2.7GPa. A sketch of the band structure transition is shown

on Fig. 2c). The closing of the gap takes place near the A point along the A→H line in the

Brillouin zone.

The low value of PC predicted by GGA is due to the underestimation of the band gap

inherent to the DFT methodology. For a better estimation of the band gap, we performed a

GW calculation. The quasiparticle energies were evaluated within the G0W0 approximation
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FIG. 2. (a) Quasiparticle self-energy corrections as a function of LDA energies for bulk BiTeI,

(b) GGA and GW band structure of bulk BiTeI at ambient pressure, and (c) Topological band

structure transition around the critical pressure PC . The color correspond to the weight of the

state on the Bi (blue) and Te (red) atoms.

to the electron self-energy starting from non relativistic LDA results for ambient pressure

BiTeI using the approach of Hybertsen and Louie [3]. This first-principles GW methodology

is implemented in the BERKELEYGW code [4]. The quasiparticle self-energy correction

is shown on Fig. 2a. The correction leads to an opening of the non-relativistic band gap

of 0.35eV. The ambient pressure quasiparticle correction was applied to the non-relativistic

GGA band structure at different volume using the scissor shift approximation. The spin-

orbit effect were included as a last step by calculating the spin-orbit matrix element between

the scissor-shifted Kohn-Sham GGA eigenstates following the approach of Ref. 5. The bands

structure at ambient pressure obtained from this methodology is shown in Fig. 2b. The band

gap as a function of the pressure from GW is shown on Fig. 1. The critical pressure within

this approximation is ∼ 10 GPa.
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FIG. 3. Band structure of the P63mc phase under pressure

2. BAND STRUCTURE OF THE HIGH PRESSURE PHASE

Since the optical properties of BiTeI progress gradually through the crystallographic

phase transition (see Fig. 2 in main text), our hypothesis is that the high pressure phase is

structurally close to the ambient pressure phase. A possible candidate for the high pressure

phase is the structure of the chemically related compound BiTeCl (space group P63mc with

6 atoms per unit cell). This structure correspond to a doubling of the cell in the direction

perpendicular to the layers and differs from the ambient pressure phase by the stacking of

the two BiTeI layers. We calculated the band structure of this phase at different pressure

within the LDA approximation (Fig. 3). The results show that in this phase the gap also

decreases gradually as a function of pressure. However, in contrast with the ambient pressure

phase, the P63mc phase terminates in a topologically trivial metallic state. Thus no gap

reopening or topological phase transition is expected. This is consistent with the gradual

closing of the gap observed in experiment.
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3. TRANSMISSION

Fig. 4 presents transmission data down to 0.07 eV. The optical conductivity is given to

a good approximation by − log(T (ω)), which is shown in Fig. 4a. Clearly the γ feature

remains close to its ambient value of ∼ 0.4 eV even up to 9 GPa (blue curves), indicating

a gradual evolution of the gap as a function of pressure in this pressure range. The lower

pressure p < 9 GPa data displayed in Fig. 4b shows no increase of transmission at low energy

up to 9 GPa where all curves are superposed.
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FIG. 4. Transmission data. a) Conductivity for all pressures and b) Transmission for p < 9 GPa.

Color code matches the one used in Fig. 2b of the manuscript.
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