599 research outputs found

    Cost analysis and related factors in patients with traumatic hand injury

    Get PDF
    The aim of this study was to measure the direct and indirect costs and factors influencing these costs in patients presenting following traumatic hand injury. We assessed patients aged 18-65 years who were in work. Hand injury severity and functional status were assessed. Direct costs, including medical care expenses, and indirect costs, including lost productivity, were calculated. Seventy-nine patients of a mean age of 32 years were included. The mean direct cost for each patient was 1772(471772 (47% of total cost), and the indirect cost was 1891 (53% of total cost). Injury severity, time to return to work, and hospitalization time were the main parameters of increased total cost in a linear regression analysis. © The Author(s) 2012

    The astrocyte α1A-adrenoreceptor is a key component of the neuromodulatory system in mouse visual cortex

    Get PDF
    Noradrenaline (norepinephrine) is known to modulate many physiological functions and behaviors. In this study, we tested to what extent astrocytes, a type of glial cell, participate in noradrenergic signaling in mouse primary visual cortex (V1). Astrocytes are essential partners of neurons in the central nervous system. They are central to brain homeostasis, but also dynamically regulate neuronal activity, notably by relaying and regulating neuromodulator signaling. Indeed, astrocytes express receptors for multiple neuromodulators, including noradrenaline, but the extent to which astrocytes are involved in noradrenergic signaling remains unclear. To test whether astrocytes are involved in noradrenergic neuromodulation in mice, we employed both short hairpin RNA mediated knockdown as well as pharmacological manipulation of the major noradrenaline receptor in astrocytes, the α1A-adrenoreceptor. Using acute brain slices, we found that the astrocytic α1A-adrenoreceptor subtype contributes to the generation of large intracelular Ca2+ signals in visual cortex astrocytes, which are generally thought to underlie astrocyte function. To test if reduced α1A-adrenoreceptor signaling in astrocytes affected the function of neuronal circuits in V1, we used both patch-clamp and field potential recordings. These revealed that noradrenergic signaling through the astrocyte α1A-adrenoreceptor is important to not only modulate synaptic activity but also to regulate plasticity in V1, through the potentiation of synaptic responses in circuits involved in visual information processing.JW is supported by postdoctoral fellowships and a research grant from the Research Foundation Flanders (FWO) (12V7519N, 1513020N, and 12V7522N). This work was further supported by FWO grants to MGH (1523014N, G066715N, G088415N, and G0C7922N), KU Leuven Research Council grants to MGH (C14/20/071 and CELSA/19/036), as well as a European Research Council Starting Grant (AstroFunc: 281961). MGH is currently the ERA Chair (NCBio) at i3S Porto funded by the European Commission (H2020-WIDESPREAD-2018-2020-6; NCBio; 951923)

    Designing BODIPY-based probes for fluorescence imaging of β-amyloid plaques

    Get PDF
    Styryl-congutated BODIPY dyes which are structurally similar to known Aβ peptide binding dyes, were designed and synthesized. The binding is accompanied by a large increase in the emission intensity in all cases, suggesting a high potential for use in the fluorescence imaging of Aβ plaques. © 2014 the Partner Organisations

    Optimization of distyryl-Bodipy chromophores for efficient panchromatic sensitization in dye sensitized solar cells

    Get PDF
    Cataloged from PDF version of article.Versatility of Bodipy (4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene) dyes was further expanded in recent dye-sensitized solar cell applications. Here we report a series of derivatives designed to address earlier problems in Bodipy sensitized solar cells. In the best case example, an overall efficiency of a modest 2.46% was achieved, but panchromatic nature of the dyes is quite impressive. This is the best reported efficiency in liquid electrolyte solar cells with Bodipy dyes as photosensitizers

    Selective manipulation of ICT and PET processes in styryl-bodipy derivatives: Applications in molecular logic and fluorescence sensing of metal ions

    Get PDF
    Remarkably versatile chemistry of Bodipy dyes allows the design and straightforward synthesis of multivalent-multitopic derivatives, which, with judicious selection of metal ion-ligand pairs based on known affinities, affords control and manipulation of photoinduced electron transfer and internal charge transfer processes as desired. We have demonstrated that metal ions acting as modulators (or inputs, in digital design parlance) can generate absorbance changes in accordance with the operation of a half-adder. In addition, an AND logic gate in the emission mode was delivered using a different binucleating arrangement of ligands. A molecular equivalent of a three-input AND logic gate was also obtained exploiting differential binding affinities of metal ions for different ligands. The results suggest that different metal ions can be used as nonannihilating inputs, selectively targeting various ligands incorporated within a single fluorophore, and with careful design, diverse photophysical processes can be selectively modulated, resulting in a range of signals, useful in molecular logic design, and offering an enticing potential for multianalyte chemosensors. © 2010 American Chemical Society

    Development and Application of a Whole-Genome Simple Sequence Repeat Panel for High-Throughput Genotyping in Soybean

    Get PDF
    Among commonly applied molecular markers, simple sequence repeats (SSRs, or microsatellites) possess advantages such as a high level of polymorphism and codominant pattern of inheritance at individual loci. To facilitate systematic and rapid genetic mapping in soybean, we designed a genotyping panel comprised 304 SSR markers selected for allelic diversity and chromosomal location so as to provide wide coverage. Most primer pairs for the markers in the panel were redesigned to yield amplicons of 80–600 bp in multiplex polymerase chain reaction (PCR) and fluorescence-based sequencer analysis, and they were labelled with one of four different fluorescent dyes. Multiplex PCR with sets of six to eight primer pairs per reaction generated allelic data for 283 of the 304 SSR loci in three different mapping populations, with the loci mapping to the same positions as previously determined. Four SSRs on each chromosome were analysed for allelic diversity in 87 diverse soybean germplasms with four-plex PCR. These 80 loci showed an average allele number and polymorphic information content value of 14.8 and 0.78, respectively. The high level of polymorphism, ease of analysis, and high accuracy of the SSR genotyping panel should render it widely applicable to soybean genetics and breeding

    A review on hierarchical routing protocols for wireless sensor networks

    Get PDF
    The routing protocol for Wireless Sensor Networks (WSNs) is defined as the manner of data dissemination from the network field (source) to the base station (destination). Based on the network topology, there are two types of routing protocols in WSNs, they are namely flat routing protocols and hierarchical routing protocols. Hierarchical routing protocols (HRPs) are more energy efficient and scalable compared to flat routing protocols. This paper discusses how topology management and network application influence the performance of cluster-based and chain-based hierarchical networks. It reviews the basic features of sensor connectivity issues such as power control in topology set-up, sleep/idle pairing and data transmission control that are used in five common HRPs, and it also examines their impact on the protocol performance. A good picture of their respective performances give an indication how network applications, i.e whether reactive or proactive, and topology management i.e. whether centralized or distributed would determine the network performance. Finally, from the ensuring discussion, it is shown that the chain-based HRPs guarantee a longer network lifetime compared to cluster-based HRPs by three to five times

    Intracellular modulation of excited-state dynamics in a chromophore dyad: Differential enhancement of photocytotoxicity targeting cancer cells

    Get PDF
    The photosensitized generation of reactive oxygen species, and particularly of singlet oxygen [O2(a1Δg)], is the essence of photodynamic action exploited in photodynamic therapy. The ability to switch singlet oxygen generation on/off would be highly valuable, especially when it is linked to a cancer-related cellular parameter. Building on recent findings related to intersystem crossing efficiency, we designed a dimeric BODIPY dye with reduced symmetry, which is ineffective as a photosensitizer unless it is activated by a reaction with intracellular glutathione (GSH). The reaction alters the properties of both the ground and excited states, consequently enabling the efficient generation of singlet oxygen. Remarkably, the designed photosensitizer can discriminate between different concentrations of GSH in normal and cancer cells and thus remains inefficient as a photosensitizer inside a normal cell while being transformed into a lethal singlet oxygen source in cancer cells. This is the first demonstration of such a difference in the intracellular activity of a photosensitizer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
    corecore