85 research outputs found

    Mutations in N-terminal flanking region of blue light-sensing light-oxygen and voltage 2 (LOV2) domain disrupt its repressive activity on kinase domain in the Chlamydomonas phototropin.

    Get PDF
    Phototropin is a light-regulated kinase that mediates a variety of photoresponses such as phototropism, chloroplast positioning, and stomata opening in plants to increase the photosynthetic efficiency. Blue light stimulus first induces local conformational changes in the chromophore-bearing light-oxygen and voltage 2 (LOV2) domain of phototropin, which in turn activates the serine/threonine (Ser/Thr) kinase domain in the C terminus. To examine the kinase activity of full-length phototropin conventionally, we employed the budding yeast Saccharomyces cerevisiae. In this organism, Ser/Thr kinases (Fpk1p and Fpk2p) that show high sequence similarity to the kinase domain of phototropins exist. First, we demonstrated that the phototropin from Chlamydomonas reinhardtii (CrPHOT) could complement loss of Fpk1p and Fpk2p to allow cell growth in yeast. Furthermore, this reaction was blue light-dependent, indicating that CrPHOT was indeed light-activated in yeast cells. We applied this system to a large scale screening for amino acid substitutions in CrPHOT that elevated the kinase activity in darkness. Consequently, we identified a cluster of mutations located in the N-terminal flanking region of LOV2 (R199C, L202L, D203N/G/V, L204P, T207I, and R210H). An in vitro phosphorylation assay confirmed that these mutations substantially reduced the repressive activity of LOV2 on the kinase domain in darkness. Furthermore, biochemical analyses of the representative T207I mutant demonstrated that the mutation affected neither spectral nor multimerization properties of CrPHOT. Hence, the N-terminal flanking region of LOV2, as is the case with the C-terminal flanking Jα region, appears to play a crucial role in the regulation of kinase activity in phototropin

    Chloroplasts modulate elongation responses to canopy shade by retrograde pathways involving HY5 and abscisic acid

    Get PDF
    Plants use light as energy for photosynthesis but also as a signal of competing vegetation. Using different concentrations of norflurazon and lincomycin, we found that the response to canopy shade in Arabidopsis (Arabidopsis thaliana) was repressed even when inhibitors only caused a modest reduction in the level of photosynthetic pigments. High inhibitor concentrations resulted in albino seedlings that were unable to elongate when exposed to shade, in part due to attenuated light perception and signaling via phytochrome B and phytochrome-interacting factors. The response to shade was further repressed by a retrograde network with two separate nodes represented by the transcription factor LONG HYPOCOTYL 5 and the carotenoid-derived hormone abscisic acid. The unveiled connection among chloroplast status, light (shade) signaling, and developmental responses should contribute to achieve optimal photosynthetic performance under light-changing conditions

    Impact of half-day clinical training in outpatient psychiatry on perception of mental illness by postgraduate interns

    Get PDF
    Aim: Lack of contact with patients with mental illness may contribute to mental health stigma. We conducted a half-day training program in the outpatient psychiatry clinic of a rural general hospital for postgraduate interns in Nagasaki University Hospital. Our study investigated the effectiveness of this program in reducing stigma toward mental illness. It also examined the association between an intern’s perception of mental illness and their consideration of psychiatry as a career.Methods: Participants were 12 interns at Nagasaki University Hospital who competed a pre- and post- training questionnaire. The questionnaire assessed perceptions of mental illness using a semantic differential scale and measured consideration of psychiatry as a career on a 7 point Likert scale. Paired t-tests were used to compare mean pre- and post-training scores on the semantic differential scale. Pearson’s correlation was used to examine associations between semantic differential scores and consideration of psychiatry as a career.Results: Post-training scores were higher than pre-training scores on the items “warm” (P = 0.003), “clean” (P = 0.009), “bright” (P = 0.001), and “calm” (P = 0.003) as associated with mental illness. Consideration of psychiatry as a career significantly correlated with post-training score on “warm” (r = 0.587, P = 0.045).Conclusion: Interns can develop positive perceptions of mental illness after a half-day training program in a psychiatry outpatient clinic. Perceptions of mental illness as “warm” after training correlated with consideration of psychiatry as a career

    介護予防事業に関する研究(II) : 事前事後調査による介護予防プログラムの効果

    Get PDF
    介護予防事業の一環として,小野市が関西国際大学地域研究所に委託し,一般高齢者を対象に介護予防教室が開かれた。プログラムの内容は,介護予防体操と体力測定,健康講話,口腔ケアなどであった。プログラム実施前後には,受講生を対象に健康に対する意識と行動の質問紙調査と体力測定が実施された。本研究の目的は,プログラム実施前後に回答した受講生174名のデータをもとに,このプログラムの効果を検討するものである。その結果,事前事後データの変化からプログラムの有効性がほぼ検証された。今後は,男女別,世代別に詳細な検討をしていきたい。Ono city commissioned some programs of their care prevention project for its local senior citizens to the Institute of Area Studies at Kansai University of International Studies. The programs consisted of a seminar of exercises for care prevention, physical strength tests, a lecture on health managements, and oral cavity care. Pre- and post- paper based surveys and the physical strength tests were conducted to examine the effectiveness of the programs. 174 participants provided the data, which proved that the programs were effective. For the future study, we would like to conduct a further analysis to examine the effects of the difference of the gender and generation

    Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers

    Get PDF
    Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods chitin is covalently linked to proteins and tanned by quinones, in fungi it is covalently linked to glucans, while in bacteria chitin is diversely combined according to Gram(+/−) classification. On the other hand, isolated, purified chitin is a plain polysaccharide that, at the nano level, presents itself as a highly associated structure, recently refined in terms of regularity, nature of bonds, crystallinity degree and unusual colloidal behavior. Chitins and modified chitins exert a number of beneficial actions, i.e., (i) they stimulate macrophages by interacting with receptors on the macrophage surface that mediate the internalization of chitin particles to be degraded by lysozyme and N-acetyl-β-glucosaminidase (such as Nod-like, Toll-like, lectin, Dectin-1, leukotriene 134 and mannose receptors); (ii) the macrophages produce cytokines and other compounds that confer non-specific host resistance against bacterial and viral infections, and anti-tumor activity; (iii) chitin is a strong Th1 adjuvant that up-regulates Th1 immunity induced by heat-killed Mycobacterium bovis, while down- regulating Th2 immunity induced by mycobacterial protein; (iv) direct intranasal application of chitin microparticles into the lung was also able to significantly down-regulate allergic response to Dermatophagoids pteronyssinus and Aspergillus fumigatus in a murine model of allergy; (v) chitin microparticles had a beneficial effect in preventing and treating histopathologic changes in the airways of asthmatic mice; (vi) authors support the fact that chitin depresses the development of adaptive type 2 allergic responses. Since the expression of chitinases, chitrotriosidase and chitinase-like proteins is greatly amplified during many infections and diseases, the common feature of chitinase-like proteins and chitinase activity in all organisms appears to be the biochemical defense of the host. Unfortunately, conceptual and methodological errors are present in certain recent articles dealing with chitin and allergy, i.e., (1) omitted consideration of mammalian chitinase and/or chitotriosidase secretion, accompanied by inactive chitinase-like proteins, as an ancestral defensive means against invasion, capable to prevent the insurgence of allergy; (2) omitted consideration of the fact that the mammalian organism recognizes more promptly the secreted water soluble chitinase produced by a pathogen, rather than the insoluble and well protected chitin within the pathogen itself; (3) superficial and incomplete reports and investigations on chitin as an allergen, without mentioning the potent allergen from crustacean flesh, tropomyosine; (4) limited perception of the importance of the chemical/biochemical characteristics of the isolated chitin or chitosan for the replication of experiments and optimization of results; and (5) lack of interdisciplinarity. There is quite a large body of knowledge today on the use of chitosans as biomaterials, and more specifically as drug carriers for a variety of applications: the delivery routes being the same as those adopted for the immunological studies. Said articles, that devote attention to the safety and biocompatibility aspects, never reported intolerance or allergy in individuals and animals, even when the quantities of chitosan used in single experiments were quite large. Therefore, it is concluded that crab, shrimp, prawn and lobster chitins, as well as chitosans of all grades, once purified, should not be considered as “crustacean derivatives”, because the isolation procedures have removed proteins, fats and other contaminants to such an extent as to allow them to be classified as chemicals regardless of their origin

    Residues Clustered in the Light-Sensing Knot of Phytochrome B are Necessary for Conformer-Specific Binding to Signaling Partner PIF3

    Get PDF
    The bHLH transcription factor, PHYTOCHROME INTERACTING FACTOR 3 (PIF3), interacts specifically with the photoactivated, Pfr, form of Arabidopsis phytochrome B (phyB). This interaction induces PIF3 phosphorylation and degradation in vivo and modulates phyB-mediated seedling deetiolation in response to red light. To identify missense mutations in the phyB N-terminal domain that disrupt this interaction, we developed a yeast reverse-hybrid screen. Fifteen individual mutations identified in this screen, or in previous genetic screens for Arabidopsis mutants showing reduced sensitivity to red light, were shown to also disrupt light-induced binding of phyB to PIF3 in in vitro co-immunoprecipitation assays. These phyB missense mutants fall into two general classes: Class I (eleven mutants) containing those defective in light signal perception, due to aberrant chromophore attachment or photoconversion, and Class II (four mutants) containing those normal in signal perception, but defective in the capacity to transduce this signal to PIF3. By generating a homology model for the three-dimensional structure of the Arabidopsis phyB chromophore-binding region, based on the crystal structure of Deinococcus radiodurans phytochrome, we predict that three of the four Class II mutated phyB residues are solvent exposed in a cleft between the presumptive PAS and GAF domains. This deduction suggests that these residues could be directly required for the physical interaction of phyB with PIF3. Because these three residues are also necessary for phyB-imposed inhibition of hypocotyl elongation in response to red light, they are functionally necessary for signal transfer from photoactivated phyB, not only to PIF3 and other related bHLH transcription factors tested here, but also to other downstream signaling components involved in regulating seedling deetiolation

    CHLH/GUN5 function in tetrapyrrole metabolism is correlated with plastid signaling but not ABA responses in guard cells

    Get PDF
    Expression of Photosynthesis-Associated Nuclear Genes (PhANGs) is controlled by environmental stimuli and plastid-derived signals ("plastid signals") transmitting the developmental and functional status of plastids to the nucleus. Arabidopsis genomes uncoupled (gun) mutants exhibit defects in plastid signaling, leading to ectopic expression of PhANGs in the absence of chloroplast development. GUN5 encodes the plastid-localized Mg-chelatase enzyme subunit (CHLH), and recent studies suggest that CHLH is a multifunctional protein involved in tetrapyrrole biosynthesis, plastid signaling and ABA responses in guard cells. To understand the basis of CHLH multifunctionality, we investigated 15 gun5 missense mutant alleles and transgenic lines expressing a series of truncated CHLH proteins in a severe gun5 allele (cch) background (tCHLHs, 10 different versions). Here, we show that Mg-chelatase function and plastid signaling are generally correlated; in contrast, based on the analysis of the gun5 missense mutant alleles, ABA-regulated stomatal control is distinct from these two other functions. We found that none of the tCHLHs could restore plastid-signaling or Mg-chelatase functions. Additionally, we found that both the C-terminal half and N-terminal half of CHLH function in ABA-induced stomatal movement
    corecore