12 research outputs found

    Hierarchical feature extraction from spatiotemporal data for cyber-physical system analytics

    Get PDF
    With the advent of ubiquitous sensing, robust communication and advanced computation, data-driven modeling is increasingly becoming popular for many engineering problems. Eliminating difficulties of physics-based modeling, avoiding simplifying assumptions and ad hoc empirical models are significant among many advantages of data-driven approaches, especially for large-scale complex systems. While classical statistics and signal processing algorithms have been widely used by the engineering community, advanced machine learning techniques have not been sufficiently explored in this regard. This study summarizes various categories of machine learning tools that have been applied or may be a candidate for addressing engineering problems. While there are increasing number of machine learning algorithms, the main steps involved in applying such techniques to the problems consist in: data collection and pre-processing, feature extraction, model training and inference for decision-making. To support decision-making processes in many applications, hierarchical feature extraction is key. Among various feature extraction principles, recent studies emphasize hierarchical approaches of extracting salient features that is carried out at multiple abstraction levels from data. In this context, the focus of the dissertation is towards developing hierarchical feature extraction algorithms within the framework of machine learning in order to solve challenging cyber-physical problems in various domains such as electromechanical systems and agricultural systems. Furthermore, the feature extraction techniques are described using the spatial, temporal and spatiotemporal data types collected from the systems. The wide applicability of such features in solving some selected real-life domain problems are demonstrated throughout this study

    Prognostics of Combustion Instabilities from Hi-speed Flame Video using A Deep Convolutional Selective Autoencoder

    Get PDF
    The thermo-acoustic instabilities arising in combustion processes cause significant deterioration and safety issues in various human-engineered systems such as land and air based gas turbine engines. The phenomenon is described as selfsustaining and having large amplitude pressure oscillations with varying spatial scales of periodic coherent vortex shedding. Early detection and close monitoring of combustion instability are the keys to extending the remaining useful life (RUL) of any gas turbine engine. However, such impending instability to a stable combustion is extremely difficult to detect only from pressure data due to its sudden (bifurcationtype) nature. Toolchains that are able to detect early instability occurrence have transformative impacts on the safety and performance of modern engines. This paper proposes an endto- end deep convolutional selective autoencoder approach to capture the rich information in hi-speed flame video for instability prognostics. In this context, an autoencoder is trained to selectively mask stable flame and allow unstable flame image frames. Performance comparison is done with a wellknown image processing tool, conditional random field that is trained to be selective as well. In this context, an informationtheoretic threshold value is derived. The proposed framework is validated on a set of real data collected from a laboratory scale combustor over varied operating conditions where it is shown to effectively detect subtle instability features as a combustion process makes transition from stable to unstable region

    An end-to-end convolutional selective autoencoder approach to Soybean Cyst Nematode eggs detection

    Get PDF
    This paper proposes a novel selective autoencoder approach within the framework of deep convolutional networks. The crux of the idea is to train a deep convolutional autoencoder to suppress undesired parts of an image frame while allowing the desired parts resulting in efficient object detection. The efficacy of the framework is demonstrated on a critical plant science problem. In the United States, approximately $1 billion is lost per annum due to a nematode infection on soybean plants. Currently, plant-pathologists rely on labor-intensive and time-consuming identification of Soybean Cyst Nematode (SCN) eggs in soil samples via manual microscopy. The proposed framework attempts to significantly expedite the process by using a series of manually labeled microscopic images for training followed by automated high-throughput egg detection. The problem is particularly difficult due to the presence of a large population of non-egg particles (disturbances) in the image frames that are very similar to SCN eggs in shape, pose and illumination. Therefore, the selective autoencoder is trained to learn unique features related to the invariant shapes and sizes of the SCN eggs without handcrafting. After that, a composite non-maximum suppression and differencing is applied at the post-processing stage.Comment: A 10 pages, 8 figures International Conference on Machine Leaning(ICML) Submissio

    Hierarchical feature extraction from spatiotemporal data for cyber-physical system analytics

    Get PDF
    With the advent of ubiquitous sensing, robust communication and advanced computation, data-driven modeling is increasingly becoming popular for many engineering problems. Eliminating difficulties of physics-based modeling, avoiding simplifying assumptions and ad hoc empirical models are significant among many advantages of data-driven approaches, especially for large-scale complex systems. While classical statistics and signal processing algorithms have been widely used by the engineering community, advanced machine learning techniques have not been sufficiently explored in this regard. This study summarizes various categories of machine learning tools that have been applied or may be a candidate for addressing engineering problems. While there are increasing number of machine learning algorithms, the main steps involved in applying such techniques to the problems consist in: data collection and pre-processing, feature extraction, model training and inference for decision-making. To support decision-making processes in many applications, hierarchical feature extraction is key. Among various feature extraction principles, recent studies emphasize hierarchical approaches of extracting salient features that is carried out at multiple abstraction levels from data. In this context, the focus of the dissertation is towards developing hierarchical feature extraction algorithms within the framework of machine learning in order to solve challenging cyber-physical problems in various domains such as electromechanical systems and agricultural systems. Furthermore, the feature extraction techniques are described using the spatial, temporal and spatiotemporal data types collected from the systems. The wide applicability of such features in solving some selected real-life domain problems are demonstrated throughout this study.</p

    3D convolutional selective autoencoder for instability detection in combustion systems

    No full text
    While analytical solutions of critical (phase) transitions in dynamical systems are abundant for simple nonlinear systems, such analysis remains intractable for real-life dynamical systems. A key example is thermoacoustic instability in combustion, where prediction or early detection of the onset of instability is a hard technical challenge, which needs to be addressed to build safer and more energy-efficient gas turbine engines powering aerospace and energy industries. The instabilities arising in combustion chambers of engines are mathematically too complex to model. To address this issue in a data-driven manner instead, we propose a novel deep learning architecture called 3D convolutional selective autoencoder (3D-CSAE) to detect the evolution of self-excited oscillations using spatiotemporal data, i.e., hi-speed videos taken from a swirl-stabilized combustor (laboratory surrogate of gas turbine engine combustor). 3D-CSAE consists of filters to learn, in a hierarchical fashion, the complex visual and dynamic features related to combustion instability from the training videos (i.e., two spatial dimensions for the image frames and the third dimension for time). We train the 3D-CSAE on frames of videos obtained from a limited set of operating conditions. We select the 3D-CSAE hyper-parameters that are effective for characterizing hierarchical and multiscale instability structure evolution by utilizing the dynamic information available in the video. The proposed model clearly shows performance improvement in detecting the precursors and the onset of instability. The machine learning-driven results are verified with physics-based off-line measures. Advanced active control mechanisms can directly leverage the proposed online detection capability of 3D-CSAE to mitigate the adverse effects of combustion instabilities on the engine operating under various stringent requirements and conditions

    A deep learning framework to discern and count microscopic nematode eggs

    Get PDF
    In order to identify and control the menace of destructive pests via microscopic image-based identification state-of-the art deep learning architecture is demonstrated on the parasitic worm, the soybean cyst nematode (SCN), Heterodera glycines. Soybean yield loss is negatively correlated with the density of SCN eggs that are present in the soil. While there has been progress in automating extraction of egg-filled cysts and eggs from soil samples counting SCN eggs obtained from soil samples using computer vision techniques has proven to be an extremely difficult challenge. Here we show that a deep learning architecture developed for rare object identification in clutter-filled images can identify and count the SCN eggs. The architecture is trained with expert-labeled data to effectively build a machine learning model for quantifying SCN eggs via microscopic image analysis. We show dramatic improvements in the quantification time of eggs while maintaining human-level accuracy and avoiding inter-rater and intra-rater variabilities. The nematode eggs are correctly identified even in complex, debris-filled images that are often difficult for experts to identify quickly. Our results illustrate the remarkable promise of applying deep learning approaches to phenotyping for pest assessment and management.This article is published as Akintayo, Adedotun, Gregory L. Tylka, Asheesh K. Singh, Baskar Ganapathysubramanian, Arti Singh, and Soumik Sarkar. "A deep learning framework to discern and count microscopic nematode eggs." Scientific Reports 8 (2018): 9145. doi: 10.1038/s41598-018-27272-w.</p
    corecore