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ABSTRACT

With the advent of ubiquitous sensing, robust communication and advanced computation, data-

driven modeling is increasingly becoming popular for many engineering problems. Eliminating

difficulties of physics-based modeling, avoiding simplifying assumptions and ad hoc empirical models

are significant among many advantages of data-driven approaches, especially for large-scale complex

systems. While classical statistics and signal processing algorithms have been widely used by the

engineering community, advanced machine learning techniques have not been sufficiently explored

in this regard. This study summarizes various categories of machine learning tools that have been

applied or may be a candidate for addressing engineering problems. While there are increasing

number of machine learning algorithms, the main steps involved in applying such techniques to

the problems consist in: data collection and pre-processing, feature extraction, model training

and inference for decision-making. To support decision-making processes in many applications,

hierarchical feature extraction is key. Among various feature extraction principles, recent studies

emphasize hierarchical approaches of extracting salient features that is carried out at multiple

abstraction levels from data. In this context, the focus of the dissertation is towards developing

hierarchical feature extraction algorithms within the framework of machine learning in order to

solve challenging cyber-physical problems in various domains such as electromechanical systems

and agricultural systems. Furthermore, the feature extraction techniques are described using the

spatial, temporal and spatiotemporal data types collected from the systems. The wide applicability

of such features in solving some selected real-life domain problems are demonstrated throughout

this study.
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CHAPTER 1. OVERVIEW

The success stories recorded on real world applications by machine and deep learning algorithms

are abundant, especially in many sectors including academic, business, Internet, communication

and health care industries. Tasks such as recognition of handwritten digit (LeCun et al. (1998a))

have been useful for identifying authenticity of signatures on checks (LeCun and Bengio (1995)),

while processing of speech and natural languages with deep convolutional networks (Collobert and

Weston (2008)) have found uses in audio and video-based tasks.

In the health-care sector, machine learning algorithms are embedded in devices to diagnose

heart failure, assimilate seizure patterns and to detect growth of tumor cells among many other

applications in health diagnosis and drug delivery (Volk et al. (2012)). Similarly, improved security

techniques such as employer access control by Amazon and cognitive computing for medical ap-

plications and discovery by IBM all employ one form of machine learning techniques or the other.

Some Internet applications for everyday convenience purposes include identifying spam emails at

Google Inc., product recommendation by Amazon, movie and music recommender systems by Net-

flix Inc. and Spotify respectively, graph search at Facebook Inc., with the list becoming endless

by each new day. All of such algorithms in use to achieve these goals of making lives convenient

underscore the applications of large-scale, data-driven optimization. While these and other similar

applications are having transformative impact on society, the spot-light is on many possible core

engineering and agricultural tasks that could benefit from machine and deep learning tools. In that

regard, this research attempted to bridge some gaps by exploring the potential real-life benefits of

feature extraction, using machine and deep learning tools to successfully solve some engineering

and plant science problems.
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1.1 Introduction

A major on-going research in the area of machine learning and artificial intelligence is the

aspect of extracting salient features from data. Feature extraction is an important initial step to

any machine learning task (after data curation) for making efficient, machine learning algorithms.

For instance, a query task would require gathering only the information related to the query at

hand through some form of expert knowledge or models which are able to discern certain patterns

from data. Among several possible engineering applications, this research focuses on applying

novel feature extraction methods for engineering problems (e.g., early detection of combustion

instabilities) and agricultural problems (e.g., plant stress phenotyping for improving yields). While

these problems and others to be discussed represent very different physical systems, the research will

attempt to show the effectiveness of similar concept of hierarchical feature extraction formulations

from different perspective, based on best current practices that are able to extract the ‘best’ features.

The main elements of the hypothesis that this research will enhance are described by the following

’what’ questions. What datasets best explain the interesting features related to the problems? How

quick are such datasets available for analysis? How can one quantify the information content of

such dataset? What volume is required to extract the right features from the datasets? How does

one find out what information are irrelevant, redundant or constitute undesirable properties? These

kinds of questions are still open-ended because they depend largely on the problem at hand. In

the context of our applications, these questions have huge impacts where there is a need to embed

the available domain/expert knowledge about the system within the feature extraction process. In

addition to the above, further questions to be answered in the application of feature extraction to

agricultural systems are related to both ‘how’ in addition to the ‘what’ as follows. How can we

improve the efficiency of management practices with the automated phenotyping results (Domingos

(2012))1? What are the yield potentials per stated size of available resources? How can the yield

losses be reduced? How can farmers understand what varieties of their crops produce the most yield,

1Just as farmers combine seeds with nutrients for crops to grow, engineers and data scientists combine knowledge
with data to grow programs!
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or what areas of their farm are the least affected by pests and diseases? In order to improve yield,

what information could be provided to consultants and researchers for developing better cultivars?

The last set of questions are related to the algorithm development and tool design that will enable

automating the feature extraction process and its applications. The design and development are

largely divided into two parts, namely, the software and hardware. The software part has such

questions as follows. What back-end platforms are available and efficient in computation? What

front-end user interface are easy to develop and use for a given application? Lastly, but by no means

the least, a subtle question is: what drivers are needed to communicate software information to the

hardware? For the hardware part, designers (importantly also, users) are interested in knowing the

most friendly device support are available.

1.2 Research Goal

The main goal of the research is to extract hierarchical features from the high dimensional

datasets that are characteristics of physical systems in general. Such high dimensional datasets can

be considered from spatial (i.e., those changing with space) to temporal (i.e., those changing with

time) and the more commonly encountered spatiotemporal (i.e., those changing with both space

and time). The models for approaching the kinds of observations are usually non-trivial. However,

the appeal for them are in their non-obstructiveness of the working of the systems. For automation,

most problems of these kinds are complex and would require some level of intelligence built into

a machine (called algorithms) to recognize the presence of signatures of patterns; for instance,

subclasses of stress types on individual plants or the lower dimensional representation of coherent

structures. In these applications, the large amount of high dimensional, multi-scale example images

can only be mapped into low dimensions by complex mathematical relationships learning many

parameters. With such complexity, the functions are usually not analytically tractable in most

cases (Sipser (2013)). Therefore, the entire learning pipeline requires efficient algorithms and

software architecture to acquire, save large amount of data to gain adequate insight into several

aspects simultaneously. This is the main motivation of the present research work whose goal is
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to design machine learning for hierarchical feature extraction from a large variety of engineering

and plant-related datasets for intelligent decision-making processes. Hierarchical feature extraction

can be described as a process through which application-driven features, and features-of-features

are learned and extracted from data at multiple logical layers or levels of abstraction. The study

will show different techniques that have been developed for the extraction process, as well as their

shortcomings and improvements made. Due to the diversity in the application areas of the study,

it is motivated from the perspective of data characteristics introduced earlier as spatial, temporal

and spatiotemporal types. This indeed makes sense since the patterns to be extracted are unique

to them. Some of the specific applications in electromechanical and cyber-agricultural systems that

are investigated in this research are used to motivate the goal in Subsections 1.2.1, 1.2.2 and 1.2.3.

1.2.1 Spatial data applications

The sensed datasets in the engineering and cyber-agricultural systems considered are mostly

vision-based, thus spatial in nature. It may be argued that this categorization arises from a simpli-

fication of the real observations, or is based on the kind of study pursued. Working based off that

simplification, plant biologists, breeders and agronomists for instance have a dire need to assimilate

and analyze rapidly evolving, enormous amounts of data collected from the field by farmers, which

are aided by improvements in aerial and on-site data capturing devices (Mitka and Bart (2015); Li

et al. (2014)).

In military and commercial applications, capturing good quality images and videos are key

in numerous critical decision-making tasks, ranging from security applications, path planning for

unmanned vehicles to medical diagnostics and commercial recommender systems. Large scale

applications along with cost constraints often limit capturing high quality images/videos due to

corruption. Furthermore, adverse lighting conditions, such as low-light, night time, very bright light,

dusty/foggy/cluttery environments worsen the situation. Figure 1.1 shows an example of a badly

degraded environment which may pose enormous difficulty for cheap, low dynamic range sensors.

Therefore, the area of image/video denoising has seen an abundance of recent interest from both
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Figure 1.1: Example of a Degraded Visual Environment (DVE) - dusty condition (“courtesy:

www.ensco.com”).
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academia and industry. Application domains, such as Intelligence, Surveillance and Reconnaissance

(ISiniR) missions (e.g., recognizing and distinguishing of enemy warship from a large distance),

unmanned vehicles (e.g., automated landing zone selection for UAVs or self-driving cars), medical

diagnostics (e.g., brain Magnetic Resonance Imaging (MRI)) and precision agriculture (e.g., early

detection of plant defects using visible discoloration) are some of the motivation of our approaches.

Such problems are approached via contrast enhancement and image denoising models that are

trained to learn underlying signal features in low-light images.

1.2.2 Temporal data applications

Data types varying with individual single dimensional independent variable are termed temporal

datasets. The dependent variables are traditionally a function of time, being times series. Nowa-

days, time series encompass signals that change with respect to any quantity of interest. Speech

recognition datasets, such as the speaker diarization data (Tranter and Reynolds (2006)) and farm

yield prediction using physical markers are among the standard examples of dataset considered in

this category of observations. A recent blog (Picheny (2016)) by IBM Watson developers, titled

’Look whos talking: IBM debuts Watson Speech-To-Text Speaker Diarization beta’ describes the

industrial relevance placed on the application from the speaker diarization dataset example. An

illustration is shown in Figure 1.2 of a businesswoman having a meeting with her business asso-

ciates and partners. The speech signal of each participant varies with several factors such as length

of speech and frequency of taking turns. Therefore, the dataset is high dimensional. However,

with the speaker diarization problem, given an observation from such a meeting where there is no

knowledge a priori of the number of participants, and the time period of speaking allotted to each

participant. It is of interest to determine the number of participants and label each participant’s

interval of speaking from the speech pattern records. This idea is usually to extract the most

interesting low dimensional features that embed effectively the high dimensional datasets.
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…
…

Concatenated Speech signals

…… …

Figure 1.2: High dimensional speech signals of a set of business people in a meeting: Courtesy of

“Cartoon resources on Google”.

1.2.3 Spatiotemporal data applications

High dimensional datasets varying in both space and time are termed spatiotemporal datasets.

Since most events in real life are time and space-based, these signals are the most common type of

signals available. To motivate the techniques for addressing these data, we introduce applications

such as the problem of early detection of instability characteristics in the combustion chambers of

dynamic systems. Such problems are key for anticipatory monitoring and safety-driven actions in

the operations of the engines. The patterns can be considered spatiotemporal because the systems

that generates the observations from which instabilities are detected are dynamic in nature, and

such dynamics introduce the temporal dimensions to the already spatial location. In particular,

strict NOx and other particulate gas emission laws have resulted in a shift of large chunk of engines

design issues to the domain of engineering control, especially in power generation systems and jet

propulsion engines (Samad and Annaswamy (2011)).
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With that, the ensuing approach to mitigate the engine-related pollution hazards has been

in favor of leaner (i.e., increased air-fuel ratio), premixed (controlled by the upstream distance

from the combustion chamber where the air and fuel mixture takes place) equivalent mixture

that is atomized in the combustion chambers (Huang and Yang (2009)). Consequently, a system

burning the mixture normally, i.e., in a stable state experiences some shorter time (frame) scale

structures, where it transitions to an unstable state, resulting in blowout at those time scales.

The main problems with such design are therefore the instabilities which usually become more

prominently sustained at longer time-scales. The hypothesis that was examined in this research

was how to enhance the detection of the instability signatures from flame images, pressure data,

chemiluminescence recordings, etc., using the novel cutting edge approaches introduced. Again,

the idea depends on extracting the exact patterns that represent the objects of interests.

Hierarchical  
features

Plantation

Action

Figure 1.3: Automated aerial imagery for pattern recognition and efficient crop management.

In most real life cases, there are combinations of interacting systems, such as where one sys-

tem generates and another system analyzes the generated datasets. Figure 1.3 is a schematic that
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illustrates a quad-copter with on-board sensors, hovering over a field to detect the presence of un-

desired substances. The embedded algorithm is made intelligent to perform the computations such

as calibrating the severity level of rodents or disease infections to come up with the most appropri-

ate action that is performed by a different module. It specifically illustrates an electromechanical

control system which is equipped with fast data processors for on-board detection of hierarchical

features from soil particles. In this regards, some of the extracted features may indicate the presence

of harmful microorganisms such as pests or the absence of certain soil water or fertilizer conditions.

As a result of such real-time on-board extractor actions (e.g., applications of pesticides, water or

fertilizers) are taken.

Energy prediction problems on the other hand are essential for operating, monitoring, and

optimizing (in terms of efficiency and cost) diverse energy systems, from the supply side (e.g., wind

energy, solar energy, power systems, storage) to the demand side (e.g., load monitoring, usage

of electric vehicles, building energy management). Numerous studies that are of significance to

organizations such as National Renewable Energy Laboratory (NREL) are being carried out in

terms of predicting energy generation/consumption using time-series data (Ziel et al. (2016); Liu

et al. (2015); Alessandrini et al. (2015); Zuluaga et al. (2015); Wang et al. (2015); Garshasbi et al.

(2016)).

1.3 Contributions

The objective of this research was to develop a framework that is suitable for data preprocess-

ing and features extraction from datasets following the idea of determining what constitutes rich

descriptors in respective applications. These broad topics of preprocessing and feature extraction

will be considered based on the applications in a consistent manner. The over-arching aims were to

explore the benefits of current best computational science algorithms, high performance computing

and software platforms for feature extraction from datasets by reducing (or sometimes expanding)

data and feature space dimensionality to one where the algorithm is capable of learning the ‘best’

task-based features. The contributions are divided into 2 categories, namely, the theoretical and
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practical algorithmic contributions. The main theoretical contributions of this research are itemized

as follows.

• Knowledge improvement by contributing meaningfully to the development of algorithmic

frameworks for extracting rich, robust and reliable descriptors (features) from spatial, tem-

poral and spatiotemporal data.

• Architectures review for optimally combining the heterogeneous features in a scalable way to

handle multiple applications (Mitchell (2006)).

• Algorithms’ computational efficiency optimization as measured by the speed, accuracy and

memory requirement to enhance the efficiencies of the feature extractors.

• Identification of suitable test datasets with all the typical characteristic of ‘big data’,

• Seamless interfacing of architectures with the aid of transparent graphics and central process-

ing units (GPUs and CPUs) computation.

• Analyses and discussions of results obtained from the applications of the algorithms to real-

world data in the light of some of the hypotheses.

Some of the algorithm-based contributions of this research are itemized as follows:

• Development of a Low Light Network (LLNet) to extract brightening features from synthetic

images for enhancing naturally corrupted images taken in noisy/corrupt environments or by

faulty sensors.

• Development of a streaming-type hierarchical feature extraction algorithm for energy disag-

gregation from standard reference energy disaggregation data sets.

• Automated segmentation and counting of soybean cyst nematode eggs present on microscopic

image frames for worm management and control.

• Automated detection of subtle features of coherent structures from hi-speed flame videos that

indicates the commencement of combustion instabilities.
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1.4 Organization of Dissertation

The dissertation is approached from the perspective of feature extraction from the three main

datasets. The Chapters 1 (the current one) and 2, present brief overviews of the techniques used

throughout the dissertation. Chapter 3 to Chapter 7 are dedicated to extracting features from the

datasets based on the fundamentals presented in Chapter 2. Specifically,

• Chapter 2 presents a succinct review of the available algorithm and methods that has culmi-

nated into the current state-of-the-art deep learning technique for feature extraction.

• In Chapter 3, hierarchical features that characterize basic 2-dimensional images are extracted

via a low light network in order to facilitate transfer learning for image enhancement and

denoising.

• In Chapter 4, a novel convolutional selective autoencoder approach is proposed for object

identification in both cluttered images as well as unsupervised learning of features from spatial

dataset.

• In Chapter 5, a novel hierarchical symbolic dynamic filtering technique is proposed for ex-

tracting features of features from temporal datasets – publicly available Reference Energy

Disaggregation Dataset (REDD).

• In Chapter 6, a spatiotemporal pattern network (STPN) is enhanced by constrained opti-

mization for analyzing energy demand by individual household appliances from the whole

building dataset and also, the energy supplied from an array of collocated wind turbines.

• In Chapter 7, a 3D-version of convolutional selective autoencoder is developed for spatiotem-

poral characterization of the scales and onset of intermittent structures.

• The dissertation is summarized and concluded in Chapter 8. Also, a few recommendations

of future research directions that are either on-going or possibly feasible in the light of this

research’s achievement will be described.
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• Appendix A presents an introduction to the description of the architectural platform and

hardware used for the research work.

• In Appendix B, the most commonly used software for algorithm implementation are compared

and evaluated.
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CHAPTER 2. REVIEW OF LITERATURE

In this chapter, the available wealth of knowledge that builds up to developing the deep learning

techniques are carefully reviewed. The basic curve fitting algorithms – linear to polynomial tech-

niques – in regression methods to statistical Bayesian inference algorithms, undirected graph-based

methods, basis functions are kept in the background; to develop powerful models that are able to

capture the low dimensional manifold features that are descriptive of a given complex dataset.

2.1 Introduction

By design, machine learning algorithms incorporate statistical reasoning, computational intel-

ligence, information theory, decision theory and optimization theory; making them suitable for

learning without explicit programming. In other words, machine learning algorithms help com-

puters to observe the world, learn from it and make intelligent generalizations of it. The word

machine learning is known to have been coined by Arthur Samuel in 1950 for algorithms that are

capable of modeling intelligent human behaviors. The major elements of machine learning are

the data preprocessing, transformation and feature learning. Problems in the purview of machine

learning are treated as pattern recognition problems (Bishop (2006)) in engineering applications

while psychologists and neuroscientists (Mitchell (2006)) have similar questions related to statistical

learning. From an engineering standpoint, adequate study of pattern recognition and task perfor-

mance would constitute, but is not limited to: the major categorization of learning and modeling,

the steps involved in recognizing the patterns and finally the hierarchical feature extraction concept

in the data domains. The hierarchy of steps in this machine learning review for feature extraction

is depicted in Figure 2.1.
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Machine 
Learning, ML

Engineering

Pattern 
Recognition, PR

Steps
• data preprocessing
• feature extraction, FE

Hierarchical FE
• model training & inference

Categories:
• Modeling
• Learning

HFE
• spatial data
• temporal data

• generative
• discriminative

• supervised
• Semi-supervised
• unsupervised

Figure 2.1: Machine learning applied to engineering problems with a focus on hierarchical feature

extraction.

2.1.1 Learning model - REO

A useful way to think of learning is, as a series of systematic operations of Representation,

Evaluation and Optimization (REO), resulting in the model that was described by (Domingos

(2012)). By representation, the authors were referring to a set of hypothesis space that the partic-

ular data must fulfill for a chosen classifier to be effective. The authors further described the need

to properly fit the data to the right classifier, i.e., one that is devoid of over-fitting or under-fitting.

In the evaluation stage, the simplest1 objective function that models the data is designed to be

optimized by solution space search methods that determine how well the classifier achieves the

objective set out in the evaluation function. In order to develop each individual components of the

model, several desiderata and nuances that could guide beginners to designing machine learning

tools were introduced. Some of the major factors to consider in selecting a specific algorithm are:

bias/variance, linear fit/decision tree models, beam/greedy search algorithms, training problems

that includes curse of dimensionality, blessings of uniformity, etc., among others.

1“As a rule of thumb, a dumb algorithm with lots and lots of data beats a clever one with modest amounts of it”
(Domingos (2012))
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2.1.2 Learning model - TPE

Perhaps, another perspective for describing the ideas that make up machine learning were

provided by (Mitchell (2006)) using a TPE model that is described by the performance, P of an

algorithm due to its experience, E on a specified task, T. Some of the experiences to be garnered

by the algorithm could be in the form of training dataset while those randomly set aside from the

training set, called held out sets, and others, possibly from the same field of application differently

from the training enable inference. Attempts at streamlining the categorization based on the TPE

model would enable it to be done in a concise manner. For instance, in the study (Singh et al.

(2015)), plant scientists and engineers categorized machine learning algorithms which have real

and potential applicability for the new paradigm of efficient, non-destructive type phenotyping of

stress types in plants. The authors proposed all the applications to belong to any (or combination)

of the Identification, Classification, Quantification and Prediction, ICQP model in the practice of

phenotyping stress types in plant (Mitka and Bart (2015); Li et al. (2014)). Furthermore, there are

other functions that have been reported such as information retrieval (Madsen et al. (2005)) and

natural language processing (Collobert and Weston (2008)).

2.2 Learning and Modeling Paradigms

There are several ways to categorize the large number of machine learning algorithms as introduced

in Subsection 2.1.2. While the ICQP may be a T-task based classification under the former, there

are a more wider classes of models under the task categorization. The ICQP-model (Singh et al.

(2015)) for example was a categorization of the major tasks that are needed to achieve the goal of

stress phenotyping in plants. Recently, deep learning-based approaches gained immense traction

as they have been shown to outperform all other state-of-the-art machine learning tools for a large

variety of computer vision applications such as object recognition (Krizhevsky et al. (2012a)), scene

understanding (Couprie et al. (2013)) and occlusion detection (Sarkar et al. (2015d)). Therefore,

in this study, the applicable learning categories – supervised, unsupervised and semi-supervised



16

classes are reviewed. Also, models have been approached from the perspective of how the outputs

are derived from the input dataset.

2.2.1 Supervised, semi-supervised and unsupervised learning

In supervised learning, a function (not necessarily analytic), f : X → Y relates the input,

X to some known output labels, Y corresponding to each input value (Bishop (2006)). In this

class belongs a regression problem for learning parameters relating the yield (i.e., labels) to a

set of influencing external and specie-related conditions (inputs). However, the appeal for such

learnt parameters, devoid of over-fitting, lies in their ability to predict labels from a different

combination of input factors. Usually, these new combinations are a random different combination

within the sphere of its learning. The major setback in this form of learning is the high cost

associated with labeling for each new task. On the other end of the spectrum are the segmentation

techniques such as marker type watershed models, hierarchical and partitional clustering (Wang

(2010)), cross-modal clustering (Coen (2005)) that have similarity to hard and soft thresholding.

These models constitute the group of unsupervised learning. Algorithms in this class are mostly

suited for anomaly detection type for example discoloration on surfaces of leaves may be suited for

these classes. One of the key innovations that came out of the deep learning community is learning

hierarchical features in an unsupervised manner with deep Boltzmann machines (Salakhutdinov

and Hinton (2009, 2012)). In the nonparametric modeling community, similar problems are taking

a center stage for considerations. For example, Hierarchical Dirichlet Process over Hidden Markov

Models (HDP-HMM) have been shown to be efficient for automatic speaker diarisation problems

(Fox et al. (2011)), where ‘who spoke when’ (Tranter and Reynolds (2006)) have to be identified from

a audio time-series without knowing how many speakers are present. Modeling of high-dimensional

data was explored in (Pitsikalis et al. (2003)) for analysis of speech data through generalized

fractal dimensions and Lyapunov exponents modulated by adjusting two hyper-parameters of time

delay and embedding dimension. In addition to hierarchical extraction of features, low memory,

online type applications were considered (Akintayo and Sarkar (2017)). In general, many machine
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learning models can also be learnt in a semi-supervised manner. With reference to biologically-

inspiration, an overcomplete dictionary of activities is learnt by animals at a given point of training

instance. The presence of redundancy learnt from a given application helps to supervise a related

task. In computational modeling for applications, overcompleteness added to sparsity (Elad and

Aharon (2006)) are important spices that enhance the functionality of algorithms. Artificial neural

networks for instance are an example of how algorithms learn from a training data – gaining

experience – to apply on different test sets. Convolutional neural networks (LeCun et al. (1998a);

Collobert and Weston (2008)) are among the best known and preforming examples of the neural

network. The architecture learns joint weights from invariant features in examples for effective local

neighborhood characterization. Energy-based Boltzmann machines (Salakhutdinov and Hinton

(2009, 2012); Bengio (2009); Ranzato et al. (2007)), information theoretic and manifold learning

inspired auto-encoders (Vincent et al. (2008)) are other architectures that learn features from

labeled data (Erhan et al. (2010)) for inference on different tasks.

2.2.2 Generative and discriminative models

A way to classify learning models is to consider how the outputs are estimated from input

data. In some cases, it may be desirable and effective to learn the parameters of a joint distri-

bution, P (X = x, Y = y) of the input and labels for a supervised learning or hidden units for

an unsupervised learning while other circumstances favor learning the parameters of a conditional

distribution, P (Y = y|X = x) from the input. The former classes are the generative models and

the latter fall under the discriminative models. The classical example-pair by authors (Mitchell

(2006); Ng and Jordan (2001)) are the linear classifiers and naive Bayes’, its analog logistic regres-

sion respectively for each group. When data is sparse and the model is more reliable, the generative

model are more suitable since the increasing error soon becomes asymptotic while the paradigm

of enormous amount of data favors asymptotic error reduction (Ng and Jordan (2001)) obtained

in discriminative models. The goal of generative models is to sample data from simpler (easy to

sample) distributions that generalize the finite data samples. Some of its advantages are in pre-
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diction, uncertainty estimation, missing data imputation, model selection and sample generation.

However, discriminative models are favored because of the tractability of the training components,

low computational requirements (Erdogan (2010)) and their stability in training. Discriminative

models clearly require lower number of parameters to be estimated than the generative models, but

with the disadvantage that they have to be well regularized than those of the generative model.

2.3 Machine Learning Procedure

Given the learning and modeling categories (Section 2.2), the main steps followed by a typ-

ical machine learning tool-chain are outlined and discussed in the following subheadings: data

generation and preprocessing, feature extraction and model training and inference.

2.3.1 Data pre-processing

A first step in many learning activity is based on knowledge of the domain of data because fea-

tures to an application might be disturbances to other applications. In a data-driven framework,

the features underlying many processes can best be the data that they are derived from assuming

the process is devoid of external disturbances. However, the authors in (Smola and Vishawanathan

(2008)) notes that new challenges and problems are made easier by adaptation of techniques when

they possess similar data types and/or exhibit similar relations among variables to a previously

tackled problem. However, some form of pre-processing are also important for removing unwanted

artifact like noise from data. The quality of datasets from applications have to be examined

closely. Certain qualities such as accuracy, completeness, consistency, interpretability and trust in

the source have to be verified. Based on the required qualities, tasks can be examined under the fol-

lowing categories: cleaning to tackle incompleteness, inconsistencies in units, values, and ensuring

robustness to high frequency contents. Other processes that are included in preprocessing are data

integration, transformation, reduction and discretization. Improvements in image enhancement

tasks are specifically important as they serve as useful preprocessing tools to aid further analysis.

The authors of (Vincent et al. (2008)) showed the concept of denoising auto-encoders for automat-
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ing noise removal from images while (Jain and Seung (2008)) applied convolutional neural networks

for the same purpose on natural images. Enhancement procedures such as inpainting (Xie et al.

(2012)) and deblurring (Schuler et al. (2014)) that have been reported in neural network frame-

works are some other techniques that applies learning to pre-process. An adaptive multi-column

architecture was implemented by Agostinelli et al. (2013) to robustly denoise images with varieties

of synthetically added noise types. Stacked denoising auto-encoder was used (Burger et al. (2012))

to reconstruct clean images from noisy images by exploiting the encoding layer of the multilayer

perceptron (MLP). Apart from being a preprocessing step for learning algorithms, this step has

tremendous engineering benefits for industrial and military applications. For instance, robotics

vision, drones imaging, military airplanes imaging sensors can be aided by adequately preprocessed

data. A recent study conducted by the present author with his team (Akintayo et al. (2015)) has

grouped the sources of low-light “corruption” in sensed images into three major categories. They

are based on the effects of: the environment described as degraded visual environment that arises

from unfavorable weather conditions such as fog, snow, etc., and high dynamic range of the imaging

scene; the sensor effects due to size, weight and power cost that limit the extent of improvements

to sensor devices; the image processing and display effects of discretization, image de-mosaicing

(deriving the channels for colored images), and smoothing effects in greyscale images. A sparse de-

noising auto-encoder framework, called low light network, LLNet (Lore et al. (2017)) was explored

to enhance images taken with poor sensors and/or in degraded environmental conditions due to its

reviewed benefits and track record. Also, another framework, ReProcCS (Guo et al. (2014)) which

does effectively background and foreground separation was used to detect objects of interest in a

dark scenario. All the above pre-processing goals however, the basic techniques for most algorithm

are standardization, normalization and in some cases, pre-whitening.

2.3.2 Feature extraction

An important aspect of learning is the discovery of salient features that clearly characterizes the

goal to be achieved - feature extraction. Due to its importance, several machine learning and image
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processing programs have dedicated toolkits and libraries such as Python language’s scikit-learn

that are dedicated solely for feature extraction. Features – also called parameters, features vectors,

code vectors, descriptors – are usually unique attributes that describe a process. For instance,

the health condition of an individual has different effects, the features could be thought of as the

underlying symptoms. An important property of these features is adequacy. In that perspective,

the features must just exactly represent the underlying process by being robust to all other high

frequency contents. It is the satisfaction of these properties that authors (Bengio (2009)) called

good representation. In some neural network algorithms, for instance, deep belief networks, (Bengio

et al. (2007)) Restricted Boltzmann Machines (Hinton and Salakhutdinov (2006)) and autoencoders

(Vincent et al. (2008)), feature extraction step is called a pre-training stage. Feature extraction

also falls into the category of data mining and knowledge discovery. It is an attempt to unravel the

“unknown” feature from data with machine learning algorithms. However, the word “unknown”

here is related to the algorithm’s discovery, automatic feature construction since the features are

usually known, a priori to the domain experts. Feature construction is then followed by efficient

search through a reduced set of features and then computing a criterion for assessing which features

are the most descriptive of the process. Therefore, the features are a lower dimensional abstraction

of the dataset. In this manner, data is projected to a lower dimensions manifold (Vincent et al.

(2008)), thus relating feature extraction to dimensionality reduction. The primitive algorithms are

the Fisher’s linear discriminant and nearest neighbor algorithms. The discussion was developed to

the “state-of-the-art” feature extraction methods exemplified by support vector machines, multi-

layer perceptrons and ensemble methods. Thus, features can be imagined as classifier’s prior

knowledge of an underlying application that aids it to perform the desired task.

2.3.3 Model training & inference

The fidelity of the extracted features from the model learning stage are evaluated in the training

stage on different tasks. It is basically a feedback stage where the performance, in TPE model

(Mitchell (2006)), of applying the learned features are evaluated and the error are fed back into the
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learning algorithm until a threshold in error is achieved. For example, neural networks are typically

trained using the so-called “backpropagation” algorithms that use the error feedback to improve the

models. Previously, training of layer-wise learned network in this manner had proven difficult until

(Bengio et al. (2007)) introduced techniques for achieving it in a “greedy fashion”. The training

process typically includes a regularization function as in the (LeCun et al. (1998a)) without which

the error profile would not generally be monotonically decreasing and the model becomes prone

to over-fitting. During optimizing the model parameters, the momentum-based parameters for

example, Nesterov-momentum (Sutskever et al. (2013)) are used to adaptively modify the step

sizes in optimization algorithm to reduce the tendency of getting stuck in local minima. Machine

learning algorithms other than neural networks have different training schemes. Usually, this is the

aspect that differentiates the various machine learning algorithms available. For instance, (Erdogan

(2010)) notes that least square regression method and a fisher linear discriminant (FLD) only differ

by the presence of a regularization factor in the former’s optimization, training or loss function.

The trained model is finally used to perform similar task on a new test data which was either held

out of the training set also “out-of-sample” or an entirely new dataset. This final step is called the

inference step as statistical decisions are made with the trained models.

2.4 Hierarchical Feature Extraction (HFE)

Among the various feature hierarchical feature extraction technique has been found to perform

better because of its human-like inference making property. The problem of hierarchical feature

extraction is key to the success of many applications such as robotics, complex system modeling

and image processing. For autonomous perception issues in robotics applications, environmental

features are extracted in a hierarchical manner where lower level features may signify objects in

the scene and higher level features represent contextual information needed for planning (Lai et al.

(2014)). Similarly, hierarchical feature extraction in complex systems falls under the category of

switched and hybrid system modeling approaches (Duarte Antunes (2013)). Recent successes of

deep learning in image, video and speech processing applications show the efficacy of hierarchical
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feature extraction using machine learning (Hinton and Salakhutdinov (2006); Bengio and Olivier

(2011)). In addition to the successes recorded with such structures, cognitive processes in humans

also show that ideas are generated in an adaptive and hierarchical manner. This conjecture has

provided, and continues to provide, a widespread intuition to modeling human learning and reason-

ing processes using probabilistic programming concepts (Tenenbaum et al. (2011)). Hierarchical

feature extraction in this study is classified based on the data category to be analyzed as spatial,

temporal or spatiotemporal. Given the appropriate techniques and suitably extracted features, the

major benefit of feature extraction is in making the best informed decision about the underlying

process or system.

2.4.1 Spatial data

Data types of points, lines, regions and their combinations are the bases of spatial data analysis

(Erwig et al. (1999)). The geometries are mainly produced by imaging devices such as camera and

scanners, and have been widely used in such applications as medical imaging. They are purely

location-based data useful for visualizing shapes, colors and spreads, but can have all the artifacts

present in other classes of data. The data class usually embed rich features because of their high

dimensionality, thus they require automated feature extraction techniques. Its disadvantages are

however that: its volume which can get large, thus requiring large space in databases; absence

of dynamics which limits the knowledge of how the system behavior is changing. Deep networks

have been particularly useful for these classes of data. In scene labeling applications for instance,

feature extraction was considered a major part of steps in understanding images (Farabet et al.

(2013)). The authors proposed using a deep learning architecture – convolutional multi-scale, dense

feature extraction from pixels that are embedded in multiple locations around a certain pixel. The

authors also discussed the advantages of multiple post-processing to achieve fast labeling of images.

Arriving at good representation verified by contextual consistency check was important with their

hierarchical feature extraction being enhanced to end-to-end training of the network. For graph-

based classification, input images were transformed using a Laplacian pyramid, then a pixel-wise
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classifier to group the features followed by over-segmentation techniques done on super-pixels,

conditional random field (CRF) over super-pixels and multilevel cut with class purity criterion –

comparison. It is noted that most contexts are global in nature, and they would therefore pose a

difficulty of making local decisions from global context. Most of the applications of our algorithms

have been tailored to extracting and smartly modifying features that emanate from spatial data

analysis.

2.4.2 Temporal data

Temporal dataset have been introduced as the dataset types that are traditionally called time

series. The series or signals are mostly single dimensions, only produced at discrete (bursts) or

continuous time intervals. They are of great importance to modelers of dynamic systems for controls

purposes. Electrical signals from the human sensory neurons received from electro-encephalograms

(EEGs) and electro-cardiograms (ECGs) are encoded as time series. There are other important

day-to-day activities such as the market outlook (bears or bulls), weather and climate changes,

genetic sequences, etc., that are represented in this data form. Due to the need for extracting

salient information from the trends, some of the recent-past methods that are applicable to these

category are principal component analysis (PCA), independent component analysis (ICA), Neural

Networks (NN) and filtering techniques such as Bayesian filters, Kalman filters and particle filters

(Rao et al. (2009b)). Kalman filtering, wavelet packet transforms, and least squares support vector

machines for instance, are used to predict wind power performance (Zuluaga et al. (2015); Wang

et al. (2015)), while an analog ensemble method is applied to forecast solar power (Alessandrini

et al. (2015)). Liu et al. (2015) predicts remaining state of charge of electric vehicle batteries based

on predictive control theory. Hybrid genetic algorithms and Monte Carlo simulation approaches

are applied to predict energy generation and consumption in net-zero energy buildings (Garshasbi

et al. (2016)). For modern energy systems, a large number of subsystems is usually involved,

for example, hundreds of wind turbines are closely collocated in a wind farm where the wind

resource is similar and the conditions of each are analogous in terms of the power transmission
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to the power system. As a result, there is a relationship among the wind turbine outputs, and

the characteristics of their spatial interactions can be potentially applied for prediction (Jiang and

Sarkar (2015)) and design optimization. The prediction approaches discussed above can be viewed

as methods of exploring temporal relationships. Spatial and temporal relationship widely exists in

energy systems (Jain et al. (2014); Liu et al. (2010); Jung and Broadwater (2014); Kwon (2010))

These have to a large extent formed the basis for dimensionality reduction for time series analysis.

There are also a host of methods that deals with the frequency domain transformation, Fourier

and discrete Fourier transforms of time series that have proven useful for analyzing stationary

signals such as determining prominent modes of data. In this regard, we have developed a novel

algorithm called hierarchical symbolic dynamic filtering (HSDF) (Akintayo and Sarkar (2015))

based on recently developed symbolic dynamic filtering (SDF) (Ray (2004); Sarkar et al. (2013a))

to learn models from streaming type data in an unsupervised manner (i.e., without knowing how

many unique characteristics or classes are present in data). The algorithm is an observable Markov

process that was shown to outperform the switched linear dynamical systems (SLDS) (Fox et al.

(2008)) for unsupervised feature classification. It takes advantage of the nonlinearity inherent in

the SDF framework to discover features that can, in this case can be considered to be arising

from switched nonlinear dynamical system. Also, some of the pioneers of SDF developed a Multi-

scale Symbolic Time Series Analysis (MSTSA) for characterizing seismic activities monitored by

unattended ground (Sarkar et al. (2015a)).

2.4.3 Spatiotemporal data

While the spatial and temporal cases have been considered separately, the research community

finds the need for advancing the architectures to merge both considerations for a more versatile

physical application. The category can also be seen as moving points (Erwig et al. (1999)). Some

of the applications of such framework includes, but are not limited to, complex systems such as

nuclear power plants (Jin et al. (2011)), coal-gasification systems (Chakraborty et al. (2008a)),

ship-board auxiliary systems (Sarkar et al. (2013c)) and gas turbine engines (Sarkar et al. (2008);



25

Gupta et al. (2008)). Object tracking, global positioning system, autonomous guidance and naviga-

tion systems also fall under these richest classes of data. Their analyses utilize the benefits of high

dimensionality in space of images and maps, while varying in another dimension (temporal) lead-

ing to a multi-dimensional perspective. The associated storage and management require is equally

more challenging than the previous categories. This current research’s novelty would be in part,

the developed tools’ application to complex spatiotemporal engineering and plant science datasets

such as those already considered by Sarkar (2015). It also aims to improve the learning schemes of

the spatial as well as temporal components for extracting richer features of features (Salakhutdinov

and Hinton (2012); Srivasta and Salakhutdinov (2012)). While the deep network methods such as

convolutional networks and autoencoders have mainly been suited for hierarchical over-complete

jointly convolved kernels learning (or parameters learning for lower dimensional space projections

of the input data) from rich spatial data, their success in spatiotemporal data applications have

been limited for applications where the frames in the long-range dependent sequences are not sam-

pled from distributions that are independent and identical. Examples of such spatiotemporal data

in traditional computer science applications are semantic labeling, language translation that have

potential applications in autonomous guidance vehicles and self-driving cars. Hidden Markov mod-

els, HMMs (Rabiner (1989)) that were originally suitable for modeling sequences are limited by

model complexity of dynamic hidden units, these are giving way for superior learning ideas such as

the recurrent neural networks, RNN (Lipton et al. (2015)) and its stacked variant, long short-term

memory, LSTM (Gere et al. (2000)) that had been reported (Siegelmann and Sontag (1991)) to

theoretically satisfy the Turing completeness property. Interestingly, recurrent neural networks also

apply a similar notion to our proposed selectivity for information across sequence of steps in its one

frame at a time analysis, rather than our spatial selectivity. The exploration of such spatiotemporal

features has been shown to be efficient in wind speed forecasting problems (Tascikaraoglu et al.

(2016); Jung and Broadwater (2014)). For spatio-temporal pattern recognition, an extension of

HMM to Factorial Hidden Markov Model (FHMM) (Ghahramani and Jordan (1997)) parallelizes

multiple Markov models in a distributed manner, and performs some task-related inference to ar-



26

rive at predicted observations. Deep learning techniques have the capabilities for capturing the

correlation at both multiple scales as well as dimensions (as in the known statistics). Feature ex-

traction by machine and deep learning techniques are done directly from data, unlike the traditional

extraction techniques, such as scale invariant feature transforms (SIFT) (Lowe (2004)), histogram

of oriented gradient (HOG) (Dalal and Triggs (2005)) where the features have to be mechanically

crafted into the machine, or their improvements described in symbolic dynamic filtering techniques

(SDF) (Akintayo and Sarkar (2017)) for features classification. The most basic, but important

first approach to addressing the problem employed classification of frames present in the video. A

lot of work has been done in the area of classification using the randomized isolated frames with

convolutional neural network (CNN) (Krizhevsky et al. (2012b); Simonyan and Zisserman (2014)).

While such techniques are considered static-type classification, techniques for modeling dynamic

classification in videos conditions are now relatively well understood (Wu et al. (2015)).

2.5 Development of Neural Networks

Up to this point, neural networks have been mostly highlighted as a potential framework for

extracting features, data compression from spatial, temporal and spatiotemporal data. This section

onwards are devoted to the underlying principles of neural network algorithms, and their extension

to deep learning models. Artificial neural networks are biologically-inspired (Dalva et al. (1997))

techniques developed with the aim of preserving local neuron (also units) connections as well as

being sensitive to changes in data orientations. Deep networks are a recent extension of artificial

neural network algorithms that trains several layers to attempt learning good internal representation

of features in purely layer-wise way (Hinton et al. (2006); Bengio et al. (2007); Ranzato et al.

(2007); Vincent et al. (2008)). The manner in which this is done is similar to how human beings

divide-and-conquer complex activities in a hierarchical fashion. Deep learning-based approaches

are immensely attractive because of they competitive effectively and/or outperform many other

state-of-the-art machine learning tools for a large variety of computer vision applications such as

object recognition (Krizhevsky et al. (2012a)), scene understanding (Couprie et al. (2013)) and the
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detection of occlusion edges (Sarkar et al. (2015d)). The authors of (Tenenbaum et al. (2011))

investigated how human cognitive processes leading to learning so much from little has link to the

manner of probabilistic inference made at each level in a hierarchical fashion with layers of flexible

and adaptive structures. (LeCun et al. (1998a)) reported Hubert and Wiesel work that inspired the

discovery of how the characteristic benefit of the primary visual cortex of cats are the phenomenal

basis for the best performing algorithms.

However, before focusing on specific deep learning algorithms, a categorization of machine

learning algorithms are presented here. The plethora of machine learning methods with interwoven

steps makes categorization quite complicated. In the same vein, a list of the methods are also

dynamic such that an attempt to categorize them may leave out several other important ones. Two

fundamental components of training a machine learning framework are the feed forward activation

of the units of the current layer and either a joint back-propagation of the errors over all layers

or a layer-wise pre-training that samples from the activations in a top-bottom generative fashion.

While neural networks have several definitions based on authors view, the most mathematically

concise definition of a neural architecture by Rojas (1996) is provided in the following.

Definition 2.5.1 (Neural Network). It is a 4-tuple (I, N, O, E), such that I represents the input

sites; N is the network of computing layers and nodes; O is the output sites; and E is the weighted

(weights, {w}) and biased (biases, {b}) edges.

Definition 2.5.2 (Neural Network Edges). The edges of the network are a 3-tuple, E = (u, v,

θ), such that u = I ∪N ; v = N ∪O; and the network parameters θ = (w, b) ∈ R

It is to the units of the computational graphs that the nonlinear activation functions are ap-

plied. These functions are usually selected to satisfy some general differentiability criterion, while

the real-value network parameters are randomly initialized. Consider the simple perceptron (Rosen-

blatt (1958)) modeled mathematically in Equation 2.1 in Figure 2.2, the training rule – sum and

thresholding – associates the output of a 2-layer network to the inputs.
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Figure 2.2: A simple perceptron training rule schematics.

y = σ

(∑
l

(wivi) + b

)
=


1, if z > threshold

0, otherwise

(2.1)

Where vi’s are the input units to the network, and z =
∑

l(wivi) + b, the weighted sum that

is activated by a function, σ on the weighted, (weights, wi) sum of the inputs added to a constant

bias, b to give the output y. The power of the learning rule is bestowed by the activation that is

in the case of a perceptron, a binary thresholding function, (σperceptron). The weights are therefore

the relative loading of the network, while the function for a perceptron is a thresholding-based rule.

By design, the perceptron is able to resolve most linearly separable problems CH1 (2016).

Definition 2.5.3 (Linearly separable problems). These are problems for which a hyper-plane

is sufficient to separate the activated space from the suppressed ones.
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However, when the Boolean logics examples are considered, the ‘OR’ and ‘AND’ gates are

linearly separable. The simple plane alone may not be easily generalizable to the ‘XOR’ gate where

a function that is more complex than a simple hyper-plane is required to discriminate the units. An

example of such complex association was previously tailored towards engineering the units at the

input layer, with the inclusion of ‘NOT’ gate to the former in order to yield a ‘XOR’ gate model.

One important notice is that the neurons in the perceptron rules are hard-fired (0 → ‘off’ and 1 →

‘on’) leading to instabilities in the parameter θ(W, b) learned due to jump discontinuities in the

feedback network structure. This led to the development of artificial neurons whose activations,

for example rectified linear unit (ReLU) in Figure 2.3(a) and sigmoidal function in Figure 2.3(b)

are continuous almost everywhere and at least piecewise differentiable. Figure 2.3 also shows how

the Gaussian skews in favor of different activation level along the activation profile for the units.

We note that an advantage of ReLU is its ease in training compared to other nonlinearity types

because the activations of each neuron is piece-wise linear, such that each of the real values of the

function have equal chances of being activated beyond zero value as shown in the the Gaussian to

its left in Figure 2.3. Other benefits of ReLU that are widely known are that the activation does

not saturate at the top and ReLU helps a network to reduce the debilitating effects of vanishing or

exploding gradients.

Given these adaptive neurons, the addition of several more input units, and therefore more

parameters became one of the most viable ways to model a complex hyper-plane discriminability.

This is severally referred to as increasing the width of the neural networks, and it serves as the basis

for more complex discriminatory classifiers such as the support vector machines (Burges (1998)).

However, these kinds of networks have the associated cost of exponentially increasing number

of parameters required for training the network. The more parsimonious approach to modeling

complex relationship was found to be in favor of increasing the depth of the network, since the

parameters then link the previous layers to both develop more complex relationships from previous

layers’ simpler features while also reducing the number of parameters to limit over-fitting. There

is no debate (Eldan and Shamir (2016); Segzedy et al. (2015)) on the benefits of increasing the
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Figure 2.3: Artificial neural network activation examples: (a) rectified linear unit (σrelu =

max(0, z)) (b) sigmoidal activation (σsigmoid = 1
1+e−z ) and their respective Gaussians depicting

their relative activation strengths around the values.

width or depth of the network shown in Figure 2.4, in the face of many state-of-the-art performance

recorded since the successful training of deep networks (Hinton et al. (2006); Bengio et al. (2007)).

Perhaps, the most striking advantage is their ability to mimic the cognitive manner in which human

beings learn to abstract complex problems and/or generalize when the data is sparse (Tenenbaum

et al. (2011)). Also, it has been established that each layer of deeper networks is able to individually

disentangle some underlying factors of variation that describe the complex space of the data (Bengio

(2009)) in a hierarchical manner.

One of the most intuitive background to the difficulty of initially training deeper architectures

was given in Chapter 5 of Nelson (2015). Our experience (Akintayo et al. (2016a,b)) on training

deeper network for plant science and engineering applications lend credence to the hypothesis.

Some of the problems that arises are: differences in learning rates of various layers, instability in

gradients of lower layers requiring a balance between enhanced ability and delicateness in training.

For emphasis, training a network has been described to be composed of two actions: the forward

activation and the backward - optimization.

Thus far, only the algorithmic aspect of the network has been described. It is also pertinent

to provide a brief introduction to the implementation capability required for this research. The
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Figure 2.4: Schematics showing comparison between, (a). wider network and (b). deeper network.

hardware related issue in the forward network training of the large volume of task-related data to

properly extract meaningful features has been favored (Bergstra et al. (2010b)) by parallel platforms

by compute nodes of graphics processing cards. A benefit of which is the faster computation over

sequential training procedure. Therefore, part of the training mechanism is required for loading

the data from the memory of the host (central processor) to the nodes of the GPU. Although

the nodes of GPUs are faster, they actually have lower memory capacity limiting their ability for

whole data training. In any case, there is still an open question on what memory size would be

required for deeper networks, since more and more available dataset implies better training. In this

light, there are different training schemes, namely: the deterministic full data training, the single

data stochastic training and the middle ground – mini-batch training. The advantage of the most

common mini-batch training is to balance the size required by the graphics unit while ensuring the

robustness in randomly chunked examples that are utilized for training the network each time.

Network learning ability is mainly influenced by the backward pass of the error which are utilized

to fine-tune the parameters in the training feedback loop. Two major choices in the feedback loop
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of the neural network are the loss function and the optimization scheme that evaluates the ‘best’

value of the function while the weights and biases are modified. We concentrate on these two

important components, their consequence on training and other underlying factors that influence

their choices in real-life problems.

2.5.1 Loss functions

The loss or objective function is a function that models the variables or parameters of, and

constraints to a certain goal in mathematical terms. Some other applications of such functions are in

decision making, game theory and operations research techniques. Adequate design of this function

is the backbone of the results achieved in many of the applications. Improvements in the tasks’

results have been reported (Zhao et al. (2016); Chen and Wang (2013)) when the objective functions

are designed to match the performed tasks. In our case, we include the selectivity condition, that

is formalized in Section 4.2, so that the tasks are converted to match the functions to be optimized.

The following are the common types of loss functions that are implemented in machine learning

algorithms. For all the loss types, let yo = F (vo; θ) be the network outputs and to, the known

targets, the subscripts ‘o’ represents the total sample divided by number of mini-batches and F is

a combination of layer-wise of activation functions that propagates the input units to the output

units.

2.5.1.1 Squared error loss

Squared error loss is one of the most common loss type, commonly used in gradient descent

algorithm. It is an L2-norm of the network output and the target that ensures convexity and

analyticity properties making (Zhao et al. (2016)) it suitable as objective function, J(θ). It is

widely used in regression models, such as facial marker detections (Jafri and Arabnia (2009)).

J(θ) =
1

2O

O∑
o=1

(to − yo)2 (2.2)

The loss function is almost always minimized.
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2.5.1.2 Cross-entropy

Cross-entropy function is a suitable function for training autoencoders (Vincent et al. (2008))

and unsupervised networks (Salakhutdinov and Hinton (2009)) as well as in many supervised net-

works that will be shown. The cross-entropy functional between two target distribution may be

defined as the sum of the difference between the entropy of the target distribution and the Kullback-

Liebler (Kullback and Liebler (1951)) distance of the distribution of the output from that of the

target. As a loss function, it applies non-uniform penalties to the net output values relative to the

target. The penalties are non-uniform because the targets that have, at the current step successfully

mapped the output are scaled at a different rate from those that have not satisfied the mapping.

The function is widely used for classification problems as it is able to minimize wrongly selected

classes. A proof of its derivation when the network is activated with a logistic sigmoid function

was given in (Chapter 3 of Nelson (2015)) by relating the gradient of the error with respect to the

activation to its gradient with respect to output. The binary version of the functional is shown in

equation 2.3

J(θ) =
1

O

O∑
o=1

−(tolog(yo))− (1− to)log(1− yo) (2.3)

The categorical cross-entropy functional generalizes the binary version to relating multiple output

and target values.

2.5.1.3 Hinge loss

Hinge loss is also popularly used as squared hinge loss. It is widely in support vector machines

(Burges (1998)) for classifications. The loss functional was described by Chen and Wang (2013) as

the maximum margin objective function since it was meant to separate classes of support vectors

using a hyper-plane. It has a mathematical expression of the form:

J(θ) =
1

2
W TW + C

O∑
o=1

max(
(
1−W T yoto), 0

)
(2.4)

The classes ∈ {−1, 1} and θ is mainly the included weights, W .
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Yet another loss function in the category of support vectors classification is the ranking loss,

(Chen and Wang (2013)). Also, a multi-scale version of the structural similarity index measure,

MS-SSIM that we (Lore et al. (2017)) have previously used as performance metric, have been

proposed (Zhao et al. (2016)). It is given by the weighted sum of SSIM and the absolute error, and

yield a cost function that addresses the sensitivity of the human visual system to local structures

in image processing tasks.

2.5.2 Optimization schemes

The procedure that implements finding the “best” parameters from the cost function while

maximizing the generalizability of the network is the optimization scheme. There are a host of

choices involved in deciding the appropriateness of schemes for particular objective function based

on the function’s properties already described in subsection 2.5.1.1. However, the resulting effects

of these properties make some of the factors of the optimization function intractable or undefined.

Yet, other factors like the computation time and complexity are also commonly evaluated for the

schemes. Whether it is able to find the solution in a reasonable amount of time, complexity and

around an acceptable small (∼say ε) neighborhood of the true solution are important. Optimiz-

ing deeper networks definitely pose greater challenges (Goodfellow et al. (2016)). The objective

functions for deeper networks are usually a surrogate to the true losses of the actual functions,

with the hope that the functions may buy the advantage of more generalizability in test situations.

Usually, the aim is to minimize the expectation of the objective function over the data generating

distribution, Pdata from which our observed finite samples are derived. Therefore,

θ∗ = arg min
θ
J(E(v,y)∼Pdata

; θ) (2.5)

It is perhaps for this extra complication that the problem of going deeper with neural network had

been elusive for long, before the success of the recent past decade. The true data distribution is

intractable from the finite samples, but it is now approximated by an empirical distribution in the

empirical risk minimization approach (LeCun et al. (1998b)). Optimization algorithms are broadly

classified into Hessian-based or approximated and the Hessian-free types (Goodfellow et al. (2016)).
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Analytic functions are usually amenable to the Hessian-based types while the Hessian-free (Martens

(2010)) types are suitable for intractable functions. Here also, the choice between mini-batch and

deterministic algorithms are to be considered. In deep networks, sampling based stochastic gradient

descent optimization are favored (Goodfellow et al. (2015)) due to their better parameters update

when they change in response to the error profile. Figure 2.5 shows the distinction between the

different sampling available for the construction of the loss function.
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Figure 2.5: Data sampling techniques available for the stochastic gradient descent algorithm.

The authors, Goodfellow et al. (2015); Ruder (2016) reported that the stochastic gradient

descent algorithms are faster to converge than the deterministic batch gradient descent because

it eliminates the multiple update steps in the latter. Certain hyper-parameters that are explored

further may play some important roles in balancing the learning stability, rate and convergence of

the neural network training.

2.5.2.1 Learning rate

In gradient descent optimization algorithm, the choice of learning rate is important for efficient

minimization of the loss function with respect to the parameters. The learning rate is the step
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size in the gradient descent direction. If we assume that the error profile for some applications is

convex (that is the optimum point is both a local and a global minima), Figure 2.6, then we have a

well-behaved, smooth optimization problem for which extra consideration of the following factors

are still required. Constant step sizes have the effects that a large step sizes lead to divergence

or instability close to the basins or optimum points. However, a low rate of learning is usually

inefficient to converge to the optimum points and invariably, it leads to poor performance called

under-fitting (Martens (2010)). In order to balance the side effects introduced at both ends, varying,

mostly reducing, step sizes have been introduced. The assumption behind this is that the profile

of the error curve starts steeper and then would normally become gentle near the optimum points.

Adaptive step sizes where k is the number of epochs, with properties,
∑∞

k=1 εk = ∞ and that∑∞
k=1 ε

2
k < ∞ (Nelson (2015)), are now included to enhance the step size profile by interpolating

on the number of epochs to complete learning. The trainer who has some prior knowledge of the

expected error distribution usually specifies the profile. The main bottleneck in this choice is the

requirement of a preset adaptation, which usually has to be approximated for new training or

application. SGD is sensitive to the choice of the learning rate, and it has been observed (Bottou

and Bousquet (2007)) that however rapid the convergence, the upper bound (Wolpert and Macready

(2012)) of error decrease is O( 1
k ) and the scale of deep network optimization would make the batch

GD convergence rate to result in over-fitting.

2.5.2.2 Momentum factor

Another hyper-parameter ∈ [0,1] that factors in parameter changes trends is the momentum

factor. It monitors the trends of exponentially decaying moving average of the past gradients in

order to continue in that direction. Usually, the stability of the parameter vector update at the

final stages is controlled by the momentum hyper-parameter. Mathematically, the hyper-parameter

helps to condition the Hessian (or approximated Hessian) matrix; it averages out the variation in

the trends of the gradient descent algorithm and stabilizes the training by when increased steadily to

the end of optimization (Hinton et al. (2012)).The large-scale stochastic gradient descent algorithms
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Global minima

local minimum

start

start

Figure 2.6: Local and global minima in dots, and their respective starting points are starred on an

example function.

in neural networks for most applications are not convex (globally) as shown in Figure 2.6 because

of model non-identifiability. Non-identifiability problem is worsened by the depth of the network; it

is described by Goodfellow et al. (2016) to be due to the non-uniqueness of units in all the layers. If

there are I layers, each having J units, then there are J !I symmetry in the weight space which leads

to error functional to having several local minima. However, it is possible to leverage the trade-off

between the complex, powerful and easily optimizable version where they have been decomposed

to locally convex schemes (Chen and Wang (2013)) since the symmetry assures that the cost of all

the several minima are similar and many of those represent the same global minimum.

A host of other attempts at optimizing such functions have concentrated on regions around

a known convex hull (Candes et al. (2015); Wang and Giannakis (2016)). In high dimensions,

(Martens (2010); Chen and Wang (2013)) propose that flat regions such as saddle points pose

more threat than local minima. Logical and intuitive attempts at recovering from such points are:

random initialization of the parameter value, addition of the patience hyper-parameter, among

many other techniques.
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2.5.2.3 Random Initialization

Random initialization can be imagined as a way of determining the global minimum from a

finite set of local minimum that results from different random initializations (Glorot and Bengio

(2010)) of weight parameters such that they are neither too large to prevent exploding gradients,

nor saturating gradients for such activations as sigmoid (Goodfellow et al. (2016)). Lower values of

weights on the other hand have reverse effect of vanishing gradient and as well as saturation while

(Saxe et al. (2014)) proposed initializing with a scaled version of a random orthogonal matrix that

enhances the applied layer-wise nonlinearities.

2.5.2.4 Patience factor

Patience on the other hand is a hyper-parameter that is included in the early stopping algorithm

(LeCun et al. (1990)). It controls the number of epochs that the algorithm waits for an improvement

before the current best local optimum in the direction of error minimization. The more important

requirement is the need for breaking weight symmetry of such non-locality. It is highlighted to

capture initializing weights that link (Goodfellow et al. (2016)) the units of the next layer to the

current in the hierarchy, are randomly to be different. In generative approaches (Vincent et al.

(2008); Salakhutdinov and Hinton (2009)) layer wise pre-training of the network ensure that the

complex data space is transformed into a low-dimensional manifold with a set of pre-trained weights.

In this process, (Bengio et al. (2013)) pointed out that simple few modes completely describe

the underlying data are derived, and the learnt weights are suitable for initializing the network

with better global optimality guarantee. These tricks having been developed independently, are

now combined for use in deeper models. Therefore, the update scheme for standard optimization

incorporating the tricks explained with m number of mini-batches as,

∂θk = µk(∂θk−1)− (1− µk)εk 1

m

∑
m

∇θ[Jm(θ)] (2.6)

Then with that updated, the weight at the next epoch is updated via,

θk = θk−1 + ∂θk (2.7)
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Where the learning rates εk = fl(ε
0), fl is the function adapting the step size given an initial

learning rate ε0, and ν is the momentum hyper-parameter given by,

µk =


(1− k

K )µ0 + ( kK )µK , if t < T

µK , otherwise

to reduce the effect of exploding gradients. k = 1, · · · ,K, K is the preset number of epochs, while

µ0 and µK are predetermined.

A modification provided (Sutskever et al. (2013)) proposed Nesterov gradient type momentum

that was factored in before computing the gradient at every step to replace the update in the weight

change in Equation 2.6 as follows,

∂θk = µk(∂θk−1)− (1− µk)εk 1

m

∑
m

∇θ[Jm(θ + µk∂θk−1)] (2.8)

It was shown to help the training to recover from the problematic regions of the error profile, as

well as permitting random initialization of the parameters.

2.5.2.5 Regularization factor

When the number of parameters are too many, most deep network training overfit. Similarly,

with fewer number of parameters than is expected to capture the variabilities, there is tendency to

underfit. Deeper networks features are optimal when the right fit for the data is achieved. Figure

2.7 shows and example of a function and an attempt to determine the right fit given the knowledge

of the function. Although, the data fit is desired, there are benefits in learning over-complete

dictionaries (Elad and Aharon (2006)), bases functions (Lee et al. (2006)) or kernels (Krizhevsky

et al. (2012a)) such that the goal of generalization by the networks are fulfilled. Among the

backlashes of learning such over-complete dictionaries is over-fitting. Regularization is a classical

method for reducing over fitting when the parameters required modeling the data feature scales

higher than the true required number of parameters. While training, over-fitting is noticed at a

certain epoch where the decaying validation error suddenly increases, and sustains the increase,

beyond the training error that is also decaying.
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(a) (b) (c)

Figure 2.7: Schematics of different fits of an arbitrary function: cos(1.5πx) plus random noise with,

(a). underfitting – linear fit (b). approximate fit – 2nd degree polynomial fit, and (c). over-fitting

– 15th degree polynomial fit.

One effect of over-fitting is that the weight array grows indefinitely for some units while many

other units do not get filled. There is usually skewness in the parameter array that leads to com-

putation problems, for instance, when taking the inverse of ill-conditioned arrays in the gradient-

descent based optimization. Mathematically, this occurs when the quadratic term of the Taylor

series expansion in Equation 2.9 exceeds the gradient term due to the Hessian matrix, H being out

of bound especially when the expansion is in a perturbed neighborhood, δθ that is large relative to

the parameters.

J(θ + δθ) = J(θ) +∇θJ(θ)T δθ +
1

2
δθTHδθ +H.O.T. (2.9)

Where H.O.T. represents higher order terms. L2 and L1-norms are among the first known regular-

ization methods that try to penalize terms the effect (Bishop (2006); Nowlan and Hinton (1992)).

The actions of λ are to: decay the weights for reducing array-scaling problems and induce sparsity

as well as robustness to irrelevant features:

J(θ + δθ) = J(θ) +∇θJ(θ)T δθ +
1

2
δθT (H + λI)δθ +H.O.T. (2.10)
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In auto encoders (Vincent et al. (2008)) for instance, a low dimension manifold is desired from

a high dimension data, limiting the divergence of the cross-entropy loss function from a specified

hyper parameter value induces sparsity.

2.5.2.6 Dropout

Recent approaches have focused on reducing complex co-adaptation of neurons that learn similar

features. This again leads to bad scaling of the parameter arrays because there are tendencies of the

arrays being singular due to dependencies between the column of the arrays, and array ranks that

are not full. There exist mathematical algorithms (Srebro and Shraibman (2005)) that deal with the

algebraic analysis and manipulation of rank-deficient arrays with the inclusion of bounds of validity.

In practice, dropout (Srivasta et al. (2014)) is known to reduce this complex feature co-adaptation

by randomly setting some activation units to zero at each training epoch. The authors (Hinton

et al. (2012)) described dropout as capable of providing efficient joint parameter learning in a multi-

architectural framework that may be equivalent to averaging over the conditionals when several

runs (Chen and Wang (2013)) of the algorithms are performed. They also have the advantage of

re-normalizing only sets of weights that violate a constraint. For instance, max-norm regularization

entails projecting the ||W ||2 of every layer to a circle of selected radius, R when the ||W ||2 exceeded

R (Srebro and Shraibman (2005)). Improved results was obtained using dropout in the deep learning

approaches over the then state-of-the-arts performances in handwriting, natural images, speech and

news recognition (Hinton et al. (2012)).

Going forward, it is clear that the major contribution in training a deep network lies in the

formulation of the objective loss as well as designing enhanced optimization scheme. It is noted

that there exist several factors to be considered for the design to be considered and improvement.

A few of the optimization algorithms that have been successfully applied to deep network are

presented by Schaul et al. (2014); Goodfellow et al. (2016); Ruder (2016) that require further

studies, analysis and testing are AdaGrad (Duchi et al. (2011)), RMSProp (Dauphin et al. (2015)),

Adam (Kingma and Ba (2015)), AdaDelta (Zeiler (2012)). It is also important to keep track
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of properties of the traditional optimization schemes such as the Levenburg-Marquardt scheme,

conjugate gradient schemes such as, Fletcher-Reeves, Polak-Ribiere, Broyden-Fletcher-Goldfarb-

Shannon (BFGS) and its limited memory version, coordinate descent method, polyak averaging and

the recently introduced batch normalization (Ioffe and Segzedy (2015)) which is an algorithm that

enhances re-parameterization to reduce covariate shifts whose effects are to saturate the activations

at the lower layers, and thus require learning at a slower rate due to vanishing back-propagated

gradient from the topmost layer.

2.5.3 Backpropagation algorithm

Backpropagation is a fast method for computing the gradient and examining how the parameter

changes in preceding layers affect the output. With the increasing benefits of training deeper

network, and associated topological complexities in parameter training, backprop algorithm is a

popular technique devised for understanding a network’s parameters flow. It is an important

learning module that was reformulated by Rumelhart and McClelland (1986). It aids in learning

the parameters by accounting for how changes in each parameter affects the output of a multi-

layered neural network (LeCun et al. (1998b)). Although connections in the brain appear to be

unidirectional such that all the units are locally related to the weight, unlike what is obtainable in

back propagation. Backpropagation starts with the gradient descent algorithm that minimizes the

cost function(e.g. average of the sum of squares error) relating the target and the network output.

The original implementation then decomposes the gradient of the cost function with respect to the

parameters (weights and biases) linking individual units in a layer via the chain rule to become the

product of: the differential of the cost function with respect to the activation output; the differential

of the activated output with respect to the input; and the differential of the input from previous

layer with respect to the parameters. It is basically trying to determine the combinations of weight

that leads to minimum error magnitude given by some functional of the target and last layer

activation. Backpropagation is sometimes described with four equations (Nelson (2015)) to also

include how the error in the layer above affects that in the layer below through the linking weights
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and the weighted sums. The benefit of back propagating in the weight space can be understood

to speed up changes to final state because it is a normal direction to a sigmoid activation space in

Chapter 7 of Rojas (1996).

2.6 Learning Architectures

Having developed a generic neural (deep) network and the various considerations, this section is

intended to focus on the details of the architectures of neural networks that have been useful to our

cyber-physical problems. The more popular deep learning architectures are the denoising and con-

volutional autoencoders, convolutional networks (CNN), the energy-based (restricted) Boltzmann

machines (R)BMs and the long-range dependency learners – RNNs. In the following section, the

architecture that were mostly implemented will be discussed.

2.6.1 Stacked sparse denoising autoencoder (SSDA)

SSDAs are sparsity-inducing variant of deep autoencoders that ensures learning the invariant

features embedded in the proper dimensional space of the dataset in an unsupervised manner.

Early proponents Vincent et al. (2008) have shown that by stacking several denoising autoencoders

(DA) in a greedy layer-wise manner for pre-training, the network is able to find a better parameter

space during error back-propagation.

Let y ∈ RN be the clean, uncorrupted data and x ∈ RN be the corrupted, noisy version of y

such that x = My, where M ∈ RN×N is the high-dimensional, non-analytic matrix assumed to

have corrupted the clean data. With DA, feed-forward learning functions are defined to characterize

each element of M as follows:

h(x) = σ(Wx + b)

ŷ(x) = σ′(W′h + b′)

where σ and σ′ denote the encoding and decoding functions (either of which is usually the sigmoid

function σ(s) or σ′(s) = (1+exp(−s))−1 of a single DA layer with K units, respectively. W ∈ RK×N

and b ∈ RK are the weights and biases of each layers of encoder whereas W′ ∈ RN×K and b ∈ RK
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are the weights and biases for each layer of the decoder. h(x) ∈ RK is the activation of the hidden

layer and ŷ(x) ∈ RN is the reconstruction of the input (i.e., the output of the DA).

2.6.2 Convolutional networks

Convolutional networks (cnns) (Jarrett et al. (2009)) are discriminative models that rely pri-

marily on local neighborhood matching for data dimension reduction using nonlinear mapping (i.e.

sigmoid, softmax, hyperbolic tangent). The discriminative advantage of convolutional networks

(Krizhevsky et al. (2012a)) are similar to that provided by maximum entropy markov models

(MEMM) (Erdogan (2010)) added to a global relationship among observations as in the condi-

tional random field (CRF) models (Domke (2013)). Each unit of the feature maps has common

shared weights resulting in an efficient training having relatively – compared to fully connected

layers – less number of trainable parameters (Krizhevsky et al. (2012c)). Feature extraction and

classifier learning are the two main functions of these networks (LeCun et al. (1998a)). However, in

order to learn the most expressive features, we have to determine the invariance rich codes embed-

ded in the raw data and then follow with a fully connected layer to reduce further the dimensionality

of the data and map the most important codes to a low dimension of the examples. Many image

processing and complex simulations depend on the invariance property of the convolution neural

network stated by LeCun and Bengio (1995) provided by the pooling layers. This aids to prevent

in part, the problem of over-fitting models to training samples as expressive codes are learned from

data. The feature maps are able to preserve local neighborhood patterns for each receptive field as

with over-completeness dictionary (Aharon et al. (2006)). A full and detailed review was provided

by LeCun et al. (1998a), where the authors noted the advantage of local correlation enforcing con-

volution before spatiotemporal recognition. For efficient learning purposes, convolutional networks

are able to explore the benefits of distributed map-reduce frameworks (Fung and Mann (2004))

to leverage large training data as well as multi-GPU computing. With these benefits, the winners

of the ILSVRC 2012 (Krizhevsky et al. (2012a)) utilized a large network of 8 layers with 2 GPUs

while training with the same architecture provided by LeCun et al. (1998a) to achieve the then
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best position. Subsequently, GoogLeNet (Szegedy et al. (2015)) and other authors (Simonyan and

Zisserman (2015)) have also reported better performance with larger models found to be more

related to the depth of the network. The layers that make up the convolutional network are the

convolutional and the subsampling layers.

2.6.2.1 Convolutional layer

Input, X
Activation,  𝑌𝑐

Convolution

Joint kernels 

randomly initialized 3x3 filters

Kernel 
scan
direction

Figure 2.8: Schematics of the convolutional layers.

Given the input and output pairs introduced in Section 4.2, at each convolution layer (Figure

2.8) a chosen (c× c)-dimension filter size is convolved with the patches to learn a zo−dimensional

feature map from which joint weight over the zi−dimensional feature maps that are useful for

enforcing local correlation is learnt to characterize all maps as follows,

Ŷzo(m−c+1)(n−c+1) = C[Xzimn ? Wzicc + bc] (2.11)

where C is the squashing function, rectified linear unit used and ? is a convolution operator of the

joint weights, Wzicc, bc the biases and input from previous layer, Xzimn.
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2.6.2.2 Pooling layer

E.g.
max

Pooling

Input,  𝑌

Maxpooled,  𝑌𝑝

(p x p) = (2 x 2)

Figure 2.9: Schematics of the pooling layer.

This is a subsampling layer (Figure 2.9) that smartly reduces the data dimensionality in order

to enhance computational efficiency. However, the major benefit of pooling is its introduction of

feature invariance property. The layer is usually included after convolution layers to identify and

propagate forward only the representative features in a local neighborhood. It ensures that the

neurons activation in a locality favors low entropy activity of representing the assumed locally

stationary distribution with the modal value. Physically, the most prominent of features (encoded

from high dimensional data in convolution) in the local neighborhood are chosen to represent their

feature-maps. In our formulations, maxpooling (Scherer et al. (2010)) had been chosen to propagate

the maximally-activated unit as the representative for each of our chosen (p × p) neighborhood.

Another well explored subsampling method is the mean pooling which we discovered to be influenced

by the not well activated units in the neighboring feature maps.
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2.6.2.3 Fully-connected layers

The topmost layers of a convolutional network is usually the multi-layer perceptron (Figure

2.10), especially when used in its traditional classification task. Its objective in image processing and

object recognition are usually the end-to-end type low-dimensional encoding of image space. After

the information compression performed on the low dimensional image manifold, a reconstruction of

the original input space manifold is ensured. It has the disadvantage of requiring more parameters

than the convolutional layers because of its fully connected structure, but it usually results in the

improved detection results.

Stacked inputs,  𝑌

units

E – encoder activation
e – encode 
W – weights
b – biases

Figure 2.10: Encode layer for cnn classification

2.6.3 Autoencoders

Autoencoders are models that extend discriminative cnns to generative type models. Autoen-

coders are designed to take advantage of the few modal behavior provided by the higher level

abstractions of deep networks. The high dimensional data is usual encoded with few representative
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modes at the coding layer such that the decoded layer(s) are truly representative of the desired

data features at lower dimensions.

E – encoder activation
D – decoder activation
W – weights 
b – biases 
e – encode
d - decodeStacked inputs,  𝑌

Code layer

Reconstruction,  𝑌𝑟

Figure 2.11: Pictorial description of the fully connected layers that make up an autoencoder network

The feature maps activation provided by the autoencoders are a part of the network which we

termed the fully connected layers. In these layers, the feature maps from the previous convolution

and subsampling layers are first flattened. Then, in order to reduce the number of parameters for

the fully connected layers (Figure 2.11), combat the problem of over-fitting and to avoid getting

trapped in local optima, some features are randomly left out with a dropout layers (Hinton et al.

(2012)). Dropout in the hidden layer produces better results as it eliminates the necessity for

regularization parameters used previously (Akintayo et al. (2016b)). A layer encodes the most

important feature from the input layer (or previous layers if embedded in other autoencoders);

C = E(
∑

[WeŶ + be]) (2.12)
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and another layer reconstruct the useful features with

Ŷr = D(
∑

[WdC + bd]) (2.13)

Where E and D stands for the encoder and decoder activations, which are mostly sigmoidal, to

admit the kind of objective training to be applied. b denotes the biases and W denotes the weights

of the layer. The subscripts e and d indicates the encoder and decoder. Ŷ is the input from previous

layers. In training an autoencoder, the goal is usually to minimize the reconstruction error between

the Ŷr and the input, X by formulating a loss function (Subsection 2.5.1) that is most appropriate

for the application. Note that using a sigmoidal activation for instance admits the cross entropy

minimization function while some other functions work well with the squared-error loss function.

θ∗ = arg min
θ
J(Ŷr, X) (2.14)

In that process, the parameters are updated to further reduce the error. Such models are however

known to simply learn the identity functions when the goals are optimized. There are several

variations of the autoencoder that have been explored to take advantage of the huge benefit of the

parsimonious codes provided by the autoencoder. In denoising autoencoder where the input to the

network is a corrupted version, X̃ (by adding salt-and-pepper noise (Vincent et al. (2008)) to X)

of the original input, X replaces it in Equation 2.12. Denoising autoencoders are then trained by

minimizing the cross-entropy function loss. Contractive autoencoders (Rifai et al. (2011)) on the

other hand penalize the regular autoencoder and the denoising autoencoder with a Frobenius norm

of the Jacobian matrix of the activation with respect to the input.

2.6.4 Convolutional autoencoders

In such applications as object detection and semantic segmentation where the network is ex-

pected to out images from images, we extended the classification type convolutional neural network

with an end-to-end type convolutional autoencoder, sometimes termed deconvolution nets (Zeiler

and Fergus (2014)) or fully convolutional networks (Long et al. (2015)). Convolutional networks
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have previously been augmented by energy models (Ning et al. (2005)) and symbol dynamic fil-

tering (Sarkar et al. (2015b)) with improvements in performances. However, these improvements

come with increase in number of trainable parameters, thus the network requires more data to

train. Some other interesting ideas (Farabet et al. (2013); Pinheiro and Collobert (2014)) at en-

hancing such pixel-based semantic segmentation have been attempted with various improvements

and backlashes. The key added layers to complete a convolutional autoencoder from a convolu-

tional neural network are the deconvolution and the upsampling layers. The deconvolution layer is

basically a convolution layer with the dimension of the feature map arrays for the input and output

in Equation 2.11 transposed. It should also be noted that the sigmoid activations of E and D in

Equations 2.12 and 2.13 are here replaced with the ReLU activation that suits the training of the

overall cost function.

Input,  𝑌

Un-pooling

Upsampled,  𝑌𝑢

Figure 2.12: Schematics of the upsampling layer that distinguishes a convolutional autoencoder

from a cnn.

In the upsampling layer, a reversal of pooling is done to restore the original image dimensionality

by stretching and widening (Jones (2015)) the identified features from the filters of the previous

layer. We consider it to be the reconstruction equivalence of the convolutional autoencoder network.

It may also be imagined as an upscaling of the feature maps around the axes of symmetry where

the reconstructed feature maps are optimized through the back-propagation algorithm.
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2.7 Temporal Data Analytics

Some possible ways to analyze temporal data is the use of Markov chains and probabilistic

graphical models. The success in analysis of many real world activities are facilitated by the elegant

formulation of these techniques. In this context, we developed algorithms upon these concepts and

have implemented the algorithms on observations from dynamical systems. Dynamical systems

generate time series data. This series may either be continuous or discrete signals. These signals

are shown to be too fine for most of the analysis and may contain unwanted disturbances that may

affect the performance of a data-driven model. Techniques that are used to reject such unwanted

artifacts from data are described then, the type of analyses techniques used in this research work

are reviewed.

2.7.1 Discretization and symbolization

The signals generated by dynamical systems are either discrete of continuous in nature. There-

fore, in the symbolic dynamic filtering (Ray (2004)), discretization of any continuous signals (or in

some cases already discrete signals) into symbol sequences is a major first step in the SDF formu-

lation. There are many ways of quantization (or partitioning) (Sarkar and Srivastav (2016); Sarkar

et al. (2013b, 2012); Jin et al. (2009)) depending on the specific objective functions. Based on the

characteristics of the measured signals, different symbolization techniques may be selected. The

simplest approaches for partitioning are the uniform partitioning and maximum entropy, where

data is partition based on either uniform count or uniform frequency methods respectively. These

two methods were mainly applied to simple dynamical systems with data of less variance. The

more recent discretization approaches include symbolic false nearest neighbor partitioning (SFNNP)

(Kennel and Buhl (2003)), wavelet transform (Sarkar et al. (2013b)), and Hilbert transform-based

analytic signal space partitioning (ASSP) (Subbu and Ray (2008)). Recently, a supervised parti-

tioning scheme, i.e., maximally bijective discretization (MBD) (Sarkar et al. (2013b)) was proposed

for modeling and analyzing complex dynamical systems. Unlike the other methods, MBD is able

to maximally preserve the input-output relationship originating from the continuous domain af-
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ter discretization in dynamical systems. After discretization of time-series data in the continuous

domain, symbolization is conducted subsequently to establish the D-Markov machines.

The Figure 2.13 shows the symbol sequence generation in the form of PFSA using the two

different methods, i.e., maximally bijective discretization and maximum entropy partitioning, re-

spectively.

2.7.2 Symbolic dynamic filtering technique

After the discretization process, PFSA models can then be generated from the symbol sequences

(using PFSA models) that results from such quantization. SDF is built upon the relevant concepts

of discrete dynamical systems in which discretization and symbolization are critical steps to convert

observed continuous data into discrete symbol sequences. With SDF, dynamical systems can be

studied in deterministic or probabilistic settings in terms of symbolic space by using language-

theoretic approaches, e.g., shift-maps and sliding block codes. Given a suitably defined nonempty,

finite set of symbols called alphabet Ξ, and nonempty, finite set of states Θ, the following definitions

hold,

Definition 2.7.1. (Sarkar et al. (2014)) (DFSA) A deterministic finite state automaton (DFSA)

is a 3-tuple G = (Ξ,Θ, δ) where,

1. Ξ is a finite set of symbol alphabet and Ξ 6= ∅(empty set);

2. Θ is a finite set of states and Θ 6= ∅;

3. δ : Θ× Ξ→ Θ is the mapping function for state transition;

while Ξ? represents the collection of all finite symbol sequences from Ξ including the empty sequence

ε.

Definition 2.7.2. (Sarkar et al. (2014)) (PFSA) A probabilistic finite state automaton (PFSA)

is an extension to probabilistic setting from a DFSA G = (Ξ,Θ, δ) as a pair K = (Θ, F ), i.e., the

PFSA K is a 4-tuple K = (Ξ,Θ, δ, F ) where,
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Figure 2.13: Illustration of generation of a PFSA using (a) maximal bijectively discretization and

(b) maximum entropy partitioning for system A.
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1. Ξ, Θ, and δ have the same definitions as in Definition 2.7.1;

2. Ω : Θ×Ξ→ [0, 1] is defined as a symbol generation function, i.e., probability morph function

which are such that
∑

ξ∈Ξ Ω(θ, ξ) = 1 ∀θ ∈ Θ, where pij indicates the probability of the

symbol ξj ∈ Ξ occurring with the state θi ∈ Θ.

δ is the state transition function and Ω is the state transition matrix. Nonlinearities in the

time series are represented by a specific type of PFSA called the D-Markov machines (Mukherjee

and Ray (2014)) where past depth D of symbols are considered for modeling the states as given by

|Θ| ≤ |Ξ|D (Ray (2004)).The mapping δ : Θ×Ξ→ Θ denotes a function that maps the transitions

from a current state to a future state (or self transition) given the alphabet. A morph function

π : Θ × Ξ → [0, 1] that satisfies the condition
∑

ξ∈Ξ π(θ, ξ) = 1 is also considered. Based on

the morph function, the non-negative (|Θ| × |Ξ|) state transition matrix Ω is defined as: Ωij ,

π(θi, ξj), ∀θi ∈ Θ and ∀ξj ∈ Ξ. Online learning of an SDF model involves identifying this matrix.

Note that initial state θ0 ∈ Θ of the quasi-stationary data represented by the P , (Θ,Ξ, δ,Ω)

has no influence on the state transition. However, a simple frequency count of the occurrence of

symbols in the training string sequence at depth D, followed by normalization is used to derive the

low dimensional encoding matrix Ω. Therefore, testing symbol strings that also follow the same

quantization can be evaluated for similarity or difference with a PFSA represented by Ω.

2.7.3 xD-Markov machines extension of SDF

In order to establish SDF model for multiple time series, each time series due to the temporal

features is associated with a symbol sequence (having different alphabet).

For SDF, a critical assumption is that we can approximate any symbol sequence generated by

time series data as a Markov chain of order D (which is a positive integer). Such a Markov chain

is called D-Markov machine.

Definition 2.7.3. (Sarkar et al. (2014)) (D-Markov) A D-Markov machine is an extension of a

PFSA where the previous D symbols form a state as defined by:
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1. D signifies the depth of a Markov machine;

2. Θ is a set of finite size for states with |Θ| ≤ |Ξ|D, i.e., each state in a Markov machine is

identified by some equivalence class of symbol strings whose length are D with symbols in Ξ;

3. δ : Θ× Ξ→ Θ signifies the state transition function such that if |Θ| = |Ξ|D, then there exist

any two symbols α, β ∈ H and γ ∈ H? such that φ(αγ, β) = γβ and αγ, γβ ∈ Q.

Remark 2.7.1. Based on the Definition 2.7.3, it can be concluded that a D-Markov machine is a sta-

tionary stochastic process X = · · ·x−1x0x1 · · · , in which the probability of occurrence of a new sym-

bol xn is determined by the last D symbols, i.e., P [xn|xn−1 · · ·xn−D · · ·x0] = P [xn|xn−1 · · ·xn−D].

Given Ω, the state transition matrix, each entry of the matrix demonstrates the transition

probability from one symbolic state to another. We give a simple example to illustrate this. Let

the kth state of one dynamical system A be θAk such that the ijth entry, i.e., πAij of the matrix ΩA

indicates the probability of θAk+1 as i given that the previous state θAk was j, i.e.,

πAij := P
(
ξAk+1 = i | ξAk = j

)
∀k (2.15)

Moreover, one can model an individual dynamical system making use of D-Markov machines.

Because a D-Markov machine cannot capture the interaction dependencies for multiple systems or

sub-systems in a large complex system, it has recently been extended to a xD-Markov machine,

which was originally developed in order to obtain the internally causal dependencies among different

systems or sub-systems. Different from correlation-based analysis, such a model can efficiently

build-up and fairly generalize the causal dependencies (Chattopadhyay (2014)). The following

gives a formal definition of xD-Markov machine.

Definition 2.7.4. (Sarkar et al. (2014)) (xD-Markov) Let R1 and R2 be the PFSAs which corre-

spond to symbol streams {x1} and {x2} respectively. Therefore a xD-Markov machine is defined

as a 5-tuple R1→2 := (Θ1,Ξ1,Ξ2, δ1,Ω12) such that:

1. Ξ1 = {Ξ0, ...,Ξ|Ξ1|−1} represents the alphabet set of symbol sequence {x1}
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2. Θ = {θ1, θ2, . . . , θ|Θ1|} is the state set which corresponds to symbol sequence {x1}

3. Ξ2 = {Ξ0, ...,Ξ|Ξ2|−1} represents the alphabet set of symbol sequence {x2}

4. δ1 : Θ1 × Ξ1 → Θ1 gives the state transition mapping that maps the transition in symbol

sequence {x1} from one state to another based on occurrence of a symbol in {x1}

5. ω12 is the symbol generation matrix of size |Θ1| × |Ξ2|; the ijth entry of Ω12 denotes the

probability of obtaining the symbol ξj of {x2} while making a transition from the state θi of

{x1}

Therefore, one can obtain the probability of a new symbol occurring after the previous D

symbols are given for a particular sequence. Similarly, in order to find the probability of a new

symbol occurring in a first symbol sequence with the last D symbols given of a second (different)

symbol sequence, a xD-Markov machine can be applied correspondingly. Therefore, given a xD-

Markov machine, the causal dependency of one symbol sequence on another symbol sequence can

be captured.

2.8 Summary

This review has taken a bird’s eye view approach to narrowing down, from the general ideas

to specific details as to aid the architectures to be competitive in data science and be amongst the

best performing algorithms.
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CHAPTER 3. FEATURE EXTRACTION FROM SPATIAL DATA – LOW

LIGHT NETWORK (LLNet)

In this chapter, hierarchical features that characterize basic 2-dimensional images are extracted

for image preprocessing, enhancement and denoising tasks. However, the techniques can also be

applied to multi-dimensional and multi-channel datasets with the only extra costs being to specify

the number of channels or dimensions.

3.1 Introduction

There are recent improvements in image sensing techniques from 2-dimensional gray scale image

acquisition to multi-channel RGB images. The most recent hyper-spectral imaging consists of a

multiple of hundreds of wavelength bands. However, these images are almost corrupted by sources

such as noise, low-light, smoke, fog, camera speed etc. Many applications acquire high quality

images under low light conditions via pre-processing (either by algorithms, or changing a physical

setup), post-processing, or using both. Hybrid camera systems have been designed to acquire high-

quality images in low light conditions (Li (2011)) using flash photography techniques (e.g. near-

infrared flash) in poorly illuminated environments combined with image enhancement algorithms

(Matsui et al. (2010); Petschnigg et al. (2004); Eisemann and Durand (2004); Agrawal et al. (2005)).

Some works suppressed noise artifacts (Chatterjee et al. (2011); Lee et al. (2005)), enhanced image

contrast based on wavelet coefficients (Loza et al. (2013)) and used filters to reconstruct images

due to photon noise detected under low-light conditions (Ford et al. (1997)). There are other

well known enhancement methods such as improving image contrast by histogram equalization

(Trahanias and Venetsanopoulos (1992); Cheng and Shi (2004); Pizer et al. (1987)) as well as

denoising a variety of noise types using BM3D (Dabov et al. (2009, 2008, 2007)), K-SVD (Elad and

Aharon (2006)) and non-linear filters (Chen et al. (1999); Chan et al. (2005)). For image denoising
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task using deep learning, Vincent et al. (2008) presented the concept of denoising autoencoders

for learning features from noisy images while Jain and Seung (2008) applied convolutional neural

networks to denoise natural images. The network was applied for inpainting (Xie et al. (2012)) and

deblurring (Schuler et al. (2014)). In addition, Agostinelli et al. (2013) implemented an adaptive

multi-column architecture to robustly denoise images by training the model with various types of

noise and testing on images with arbitrary noise levels and types. Stacked denoising autoencoders

were used by Burger et al. (2012) to reconstruct clean images from noisy images by exploiting the

encoding layer of the multilayer perceptron (MLP).

3.1.1 Motivation

In surveillance, monitoring and tactical reconnaissance, gathering visual information from a

dynamic environment and accurately processing such data are essential to making informed de-

cisions and ensuring the success of a mission. Camera sensors are often cost-limited to capture

clear images or videos taken in a poorly-lit environment. Many applications aim to enhance bright-

ness, contrast and reduce noise content from the images in an on-board real-time manner. A deep

autoencoder-based approach is proposed to identify signal features from low-light images and adap-

tively brighten images without over-amplifying/saturating the lighter parts in images with a high

dynamic range. We show that a variant of the stacked-sparse denoising autoencoder can learn to

adaptively enhance and denoise from synthetically darkened and noise-added training examples.

The model can be applied to images taken from natural low-light environment and/or are hardware-

degraded. Results show significant credibility of the approach both visually and by quantitative

comparison with various techniques. Good quality images and videos are important for automated

and human-level decision-making for tasks ranging from security applications, military missions,

path planning to medical diagnostics and commercial recommender systems. Clean, high-definition

pictures captured by sophisticated camera systems provide better evidence for a well-informed

course of action. However, cost constraints often limit large scale applications of such systems.

Thus, relatively inexpensive sensors are used in many cases. Furthermore, adverse conditions such
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as insufficient lighting (e.g. low-light environments, night time) worsen the situation. As a result,

many areas of application, such as Intelligence, Surveillance and Reconnaissance (ISR) missions

(e.g. recognizing and distinguishing enemy warships), unmanned vehicles (e.g. automated landing

zones for UAVs), and commercial industries (e.g. property security, personal mobile devices) stand

to benefit from improvements in image enhancement algorithms. The problem of contrast enhance-

ment was approached from a learning perspective using deep autoencoders (what we refer to as

Low-light Net, or LLNet) that are trained to learn underlying signal features in low-light images

and adaptively brighten and denoise. The method utilized the advantage of the local patch-wise

contrast improvement, similar to the works by Loza et al. (2013) to enhance contrast. The im-

provements are carried out relative to local neighbors to prevent over-amplifying the intensities of

already brightened pixels. Furthermore, the same neural network is trained to learn the structures

of objects that persist through noise in order to produce a brighter, denoised image. A novel ap-

plication of using a class of deep neural networks – stacked sparse denoising autoencoder (SSDA) –

to enhance natural low-light images is presented. A training data generation method is devised by

synthetically modifying images available on Internet databases to simulate low-light environments.

Two types of deep architecture are explored - (i) for simultaneous learning of contrast-enhancement

and denoising (LLNet) and (ii) sequential learning of contrast-enhancement and denoising using

two modules (staged LLNet or S-LLNet). The performances of the trained networks are evaluated

and compared against other methods on test data with synthetic noise and artificial darkening.

Performance evaluation was repeated on natural low-light images to demonstrate the enhancement

capability of the synthetically trained model applied on a realistic set of images obtained with reg-

ular cell-phone camera in low-light environments. Hidden layer weights of the deep network were

visualized to offer insights to the features learned by the model.

3.2 The Low-light Net (LLNet)

The proposed framework was introduced in this section along with training methodology and

network parameters.
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3.2.1 Learning features from low-light images with LLNet

Figure 3.1: Architecture of the proposed framework: (a) An autoencoder module is comprised of

multiple layers of hidden units, where the encoder is trained by unsupervised learning, the decoder

weights are transposed from the encoder and subsequently fine-tuned by error back-propagation;

(b) LLNet with a simultaneous contrast-enhancement and denoising module; (c) S-LLNet with

sequential contrast-enhancement and denoising modules. The purpose of denoising is to remove

noise artifacts often accompanying contrast enhancement.

LLNet framework takes its inspiration from SSDA Subsection 2.6.1 whose sparsity-inducing

characteristic aids learning features to denoise signals. In the present work, we take the advantage

of SSDA’s denoising capability and the deep network’s complex modeling capacity to learn features

underlying in low-light images and produce enhanced images with minimal noise and improved

contrast. A key aspect to be highlighted is that the network is trained using images obtained

from internet databases that are subsequently synthetically processed (i.e. darkening nonlinearly

and adding Gaussian noise) to simulate low-light conditions, since collection of a large number of
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natural low-light images (sufficient for deep network training) and their well-lit counterparts can

be unrealistic for practical use. Despite the fact that LLNet is trained on synthetic images, both

synthetic and natural images are used to evaluate the network’s performance in denoising and

contrast-enhancement.

Aside from the regular LLNet where the network is trained with both darkened and noisy

images, we also propose the staged LLNet (S-LLNet) which consists of separate modules arranged

in series for contrast enhancement (stage 1) and denoising (stage 2). The key distinction over the

regular LLNet is that the modules are trained separately with darkened-only training sets and

noisy-only training sets. Both structures are presented in Figure 3.1. Note, while the S-LLNet

architecture provides a greater flexibility of training (and certain performance improvement as

shown in Section 3.4), it increases the inference time slightly which may be a concern for certain real-

time applications. However, customized hardware-acceleration can resolve such issues significantly.

3.2.2 Network parameters

LLNet is comprised of 3 DA layers, with the first DA layer taking the input image of dimensions

17× 17 pixels (i.e. 289 input units). The first DA layer has 867 hidden units, the second has 578

hidden units, and the third has 289 hidden units which becomes the bottleneck layer. Beyond the

third DA layer forms the decoding counterparts of the first three layers, thus having 578 and 867

hidden units for the fourth and fifth layers respectively. Output units have the same dimension as

the input, i.e. 289. The network was pre-trained for 30 epochs with pre-training learning rates of

0.1 for the first two DA layers and 0.01 for the last DA layer, whereas fine-tuning was performed

with a learning rate of 0.1 for the first 200 fine-tuning epochs, 0.01 afterwards, and stops only if

the improvement in validation error is less than 0.5%. For the case of S-LLNet, the parameters of

each module are identical.
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3.2.3 Training the model

Training was performed using 422,500 patches, extracted from 169 standard test images1. Con-

sistent with current practices, the only pre-processing done was to normalize the image pixels to

between zero and one. During the generation of the patches, we produced 2500 patches from ran-

dom locations (and with random darkening and noise parameters) from the same image. The 17×17

pixel patches are then darkened nonlinearly using the MatLab command imadjust to randomly

apply a gamma adjustment. Gamma correction is a simple but general case with application of a

power law formula to images for pixel-wise enhancement with the following expression:

Iout = A× Iγin (3.1)

where A is a constant determined by the maximum pixel intensity in the image. Intuitively, image

is brightened when γ < 1 while γ = 1 leaves it unaffected. Therefore, when γ > 1, the mapping is

weighted toward lower (darker) gray-scale pixel intensity values.

A uniform distribution of γ ∼ Uniform (2, 5) with random variable γ, is selected to result in

training patches that are darkened to a varying degree, thus simulating multiple low-light scenarios

possible in real-life. Additionally, to simulate low quality cameras used to capture images, these

training patches are further corrupted by a Gaussian noise via MatLab function imnoise with

standard deviation of σ =
√
B(25/255)2, where B ∼ Uniform (0, 1). Hence, the final corrupted

image and the original image exhibit the following relationship:

Itrain = n (g(Ioriginal)) (3.2)

where function g(·) represents the gamma adjustment function and n(·) represents the noise func-

tion.

Random gamma darkening with random noise levels result in a variety of training images that

can increase the robustness of the model. In reality, natural low-light images may also include

quantization and Poisson noise in addition to Gaussian noise. We chose a Gaussian-only model for

the ease of analysis and as a preliminary feasibility study of the framework trained on synthetic

1Dataset URL: http://decsai.ugr.es/cvg/dbimagenes/
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images and applied to natural images. Furthermore, since Gaussian noise is a very familiar yet

popular noise model for many image denoising tasks, we can acquire a sense of how well LLNet

performs with respect to other image enhancement algorithms. The patches are randomly shuffled

and then divided into 211,250 training examples and 211,250 validation samples. The training

step involves learning the invariant representation of low light and noise with the autoencoder

described in Section 3.2.2. While training the model, the network attempts to remove the noise

and simultaneously enhance the contrast of these darkened patches. The reconstructed image is

compared against the clean version (i.e. bright, noiseless image) by computing the mean-squared

error.

When training both LLNet and S-LLNet, each DA is trained by error back-propagation to

minimize the sparsity regularized reconstruction loss as described by Xie et al. (2012):

LDA(D; θ) =
1

N

N∑
i=1

1

2
||yi − ŷ(xi)||22 + β

K∑
j=1

KL(ρ̂j ||ρ) +
λ

2
(||W ||2F + ||W ′||2F ) (3.3)

where N is the number of patches, θ = {W, b,W ′, b′} are the parameters of the model, KL(ρ̂j ||ρ)

is the Kullback-Leibler divergence between ρ (target activation) and ρ̂j (empirical average activation

of the j-th hidden unit) which induces sparsity in the hidden layers:

KL(ρ̂j ||ρ) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

(3.4)

where

ρ̂j =
1

N

N∑
i=1

hj(xi) (3.5)

and λ, β and ρ are scalar hyper-parameters determined by cross-validation.

After the weights of the decoder have been initialized, the entire pre-trained network is fine-

tuned using an error back-propagation algorithm to minimize the loss function given by:

LSSDA(D; θ) =
1

N

N∑
i=1

||yi − ŷ(xi)||22 +
λ

L

2L∑
l=1

||W (l)||2F

where L is the number of stacked DAs and W (l) denotes weights for the l-th layer in the stacked

deep network. The sparsity inducing term is not needed for this step because the sparsity was

already incorporated in the pre-trained DAs.
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3.2.4 Image reconstruction

During inference, the test image was first broken up into overlapping 17×17 patches with stride

size of 3 × 3. The collection of patches was then passed through LLNet to obtain corresponding

denoised, contrast-enhanced patches. The patches were averaged and re-arranged back into its

original dimensions. From our experiments, it was discovered that using a patching stride of 2× 2

or even 1× 1 (fully overlapped patches) do not produce significantly superior results. Additionally,

increasing the number of DA layers improves the nonlinear modeling capacity of the network.

However, a larger model was more computationally expensive to train and the network structure

was determined to be adequate for the current study.

3.3 Evaluation metrics and compared methods

In this section, a brief descriptions of other contrast-enhancement methods along with the per-

formance metric used to evaluate the proposed framework’s performance.

3.3.1 Performance metric

Two metrics are used, namely the peak signal-to-noise ratio (PSNR) and the structural simi-

larity index (SSIM).

3.3.1.1 Peak signal-to-noise ratio (PSNR)

PSNR quantifies the extent of corruption of original image with noise as well as approximating

human perception of the image. It has also been established to demonstrate direct relationship with

compression-introduced noise (Santoso et al. (2011)). Roughly, the higher the PSNR, the better

the denoised image especially with the same compression code. Basically, it is a modification of the

mean squared error between the original image and the reconstructed image. Given a noise-free
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Figure 3.2: Training the LLNet: Training images are synthetically darkened and added with noise.

These images are fed through LLNet where the reconstructed images are compared with the un-

corrupted images to compute the error, which is then back-propagated to finetune and optimize

the model weights and biases.

m× n monochrome image I and its reconstructed version K, MSE is expressed as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (3.6)

The PSNR, in decibels (dB) is defined as:

PSNR = 10 · log10

(
max(I)2

MSE

)
(3.7)

Here, max(I) is the maximum possible pixel value of the image I.

3.3.1.2 Structural similarity index (SSIM)

SSIM is a metric for capturing the perceived quality of digital images and videos (Loza et al.

(2013); Wang et al. (2004)). It is used to measure the similarity between two images. SSIM

quantifies the measurement or prediction of image quality with respect to initial uncompressed or

distortion-free image as reference. As PSNR and MSE are known to quantify the absolute error

between the result and the reference image, such metrics may not really quantify complete similarity.
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On the other hand, SSIM explores the change in image structure and being a perception-type model,

it incorporates pixel inter-dependencies as well as masking of contrast and pixel intensities. SSIM

is expressed as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3.8)

where µx is the average of window x, µy is the average of window y, σ2
x is the variance of x, σ2

y is

the variance of y, σ2
xy is the covariance of x and y, c1 = (k1L)2 and c2 = (k2L)2 are two variables

to stabilize the division with weak denominator with k1 = 0.01 and k2 = 0.03 by default, and L is

the dynamic range of pixel values.

3.3.2 Compared methods

This subsection describes certain popular methods for enhancing low-light images used here for

comparison.

3.3.2.1 Histogram equalization (HE)

Histogram equalization usually increases the global contrast of images, especially when the

usable data of the image is represented by close contrast values (Trahanias and Venetsanopoulos

(1992); Cheng and Shi (2004); Pizer et al. (1987)). Through this adjustment, the intensities can be

better distributed on the histogram. This allows for areas of lower local contrast to gain a higher

contrast. Histogram equalization accomplishes this by effectively spreading out the most frequent

intensity values. The method is useful in images with backgrounds and foregrounds that are both

bright or both dark. In particular, the method can lead to better views of bone structure in x-ray

images, and to better detail in photographs that are over or under-exposed.

3.3.2.2 Contrast-limiting adaptive histogram equalization (CLAHE)

Contrast-limiting adaptive histogram equalization differs from ordinary adaptive histogram

equalization in its contrast limiting. In the case of CLAHE, the contrast limiting procedure has to
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be applied for each neighborhood from which a transformation function is derived (Pisano et al.

(1998)). CLAHE was developed to prevent the over-amplification of noise that arise in adaptive

histogram equalization.

3.3.2.3 Gamma adjustment (GA)

The simple form of gamma correction is outlined in Equation (3.2). Gamma curves illustrated

with γ > 1 have exactly the opposite effect as those generated with γ < 1. It is important to

note that gamma correction reduces toward the identity curve when γ = 1. As discussed earlier

in Section 3.2.3, the image is brightened when γ < 1, darkened with γ > 1, while γ = 1 leaves it

unaffected.

3.3.2.4 Histogram equalization with 3D block matching (HE+BM3D)

BM3D is the current state-of-the-art algorithm for image noise removal presented by Dabov

et al. (2007). It uses a collaborative form of Wiener filter for high dimensional block of patches by

grouping similar 2D blocks into a 3D data array. The algorithm ensures the sparsity in transformed

domain and takes advantage of joint denoising of grouped patches similar in ways to pixel-wise

overcompleteness which K-Singular value Decomposition (KSVD) (Elad and Aharon (2006)), the

former best performing denoising method), ensured on patch-based dictionaries. Finally, domain

inversion is done and the results of different matched block are fused together. In this work we

attempt to first equalize the contrast of the test image, then use BM3D as a denoiser to remove

the noise resulting from histogram equalization. Attempt was made to reverse the order, i.e. use

BM3D to remove noise from the low-light images first then apply contrast enhancement. As BM3D

removes noise by patching images, the patch boundaries get significantly amplified and become

extremely pronounced when histogram equalization is applied, hence, producing non-competitive

results.
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3.4 Results and Discussion

In this section, we evaluate the performance of our framework against the methods outlined

above on standard images shown in Figure 3.3. Test images are darkened with γ = 3, where

noisy versions contain Gaussian noise of σ = 18 and σ = 25, which are typical values for image

noise under poor illumination and/or high temperature; these parameters correspond to scaled

variances of σ2
s = 0.005 and σ2

s = 0.010 respectively if the pixel intensities are in 8-bit integers

(σs = σ/255 where σs ∈ [0, 1] and σ ∈ [0, 255]). Histogram equalization is performed by using

the MatLab function histeq, whereas CLAHE was performed with the function adapthisteq with

default parameters (8×8 image tiles, contrast enhancement limit of 0.01, full range output, 256 bins

for building contrast enhancing transformation, uniform histogram distribution, and distribution

parameter of 0.4). Gamma adjustment is performed on the test image with γ = 0.3. For the

hybrid ‘HE+BM3D’ method, histogram equalization was first applied to enhance image contrast

before using the BM3D code developed by Dabov et al. (2007) as a denoiser, where the noise

standard deviation input parameter for BM3D was set to σ = 25 (the highest noise level of the test

image). Both LLNet and S-LLNet outputs were reconstructed with overlapping 17 × 17 patches

of stride size 3 × 3. Training was performed on NVIDIA’s TITAN X GPU using Theano’s deep

learning framework (Bastien et al. (2012); Bergstra et al. (2010a)) and took approximately 30 hours.

Enhancing an image with dimension of 512× 512 pixels took 0.42 s on GPU.

3.4.1 Algorithm adaptivity

Ideally, an already-bright image should no longer be brightened any further. To test this, dif-

ferent enhancement algorithms are performed on a normal, non-dark and noiseless image. Figure

3.4A shows the result when running the ‘Town’ image through various algorithms. LLNet out-

puts a slightly brighter image, but not to the degree that everything appears over-brightened and

washed-out like that in GA output. This shows that in the process of learning low-light features,

LLNet successfully learns the necessary degree of required brightening that should be applied to

the image. However, when evaluating contrast enhancement via visual inspection, histogram equal-
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Table 3.1: PSNR and SSIM of outputs using different enhancement methods. ‘Bird’ means the

non-dark and noiseless (i.e. original) image of Bird. ‘Bird-D’ indicates a darkened version of the

same image. ‘Bird-D+GN18’ denotes a darkened Bird image with added Gaussian noise of σ = 18,

whereas ‘Bird-D+GN25’ denotes darkened Bird image with added Gaussian noise of σ = 25. Bolded

numbers corresponds to the method with the highest PSNR or SSIM. Asterisk (*) denotes our

framework.

SSIM (dB) / SSIM Dark HE CLAHE GA HE+BM3D LLNet* S-LLNet*
Bird N/A 9.56 / 0.48 19.77 / 0.82 8.68 / 0.48 9.58 / 0.50 15.89 / 0.69 14.38 / 0.63
Bird-D 14.80 / 0.27 9.57 / 0.44 19.09 / 0.72 19.22 / 0.75 9.61 / 0.48 24.57 / 0.77 19.97 / 0.61
Bird-D+GN18 14.93 / 0.20 7.71 / 0.07 15.47 / 0.12 12.72 / 0.10 8.21 / 0.10 24.76 / 0.58 23.71 / 0.64
Bird-D+GN25 14.96 / 0.16 7.53 / 0.07 13.85 / 0.09 11.80 / 0.08 8.00 / 0.09 23.02 / 0.46 24.72 / 0.60
Girl N/A 18.06 / 0.81 16.88 / 0.71 10.85 / 0.78 18.03 / 0.68 19.05 / 0.83 15.73 / 0.76
Girl-D 9.58 / 0.53 18.09 / 0.81 13.74 / 0.66 30.08 / 0.99 18.06 / 0.68 20.83 / 0.79 21.32 / 0.73
Girl-D+GN18 8.79 / 0.20 15.88 / 0.26 12.42 / 0.17 16.82 / 0.30 18.87 / 0.53 18.40 / 0.59 20.59 / 0.65
Girl-D+GN25 8.76 / 0.15 15.14 / 0.19 11.61 / 0.13 15.01 / 0.20 18.11 / 0.39 17.98 / 0.48 20.72 / 0.59
House N/A 13.36 / 0.70 18.89 / 0.81 9.50 / 0.56 13.24 / 0.61 11.61 / 0.60 10.57 / 0.50
House-D 12.12 / 0.33 12.03 / 0.65 16.81 / 0.60 26.79 / 0.82 11.92 / 0.54 21.10 / 0.64 18.73 / 0.49
House-D+GN18 12.19 / 0.29 10.55 / 0.33 15.48 / 0.35 13.76 / 0.33 11.39 / 0.42 20.25 / 0.56 19.91 / 0.51
House-D+GN25 12.16 / 0.26 10.09 / 0.29 14.08 / 0.29 12.67 / 0.28 10.94 / 0.37 19.71 / 0.52 20.76 / 0.51
Pepper N/A 23.26 / 0.92 19.21 / 0.79 10.07 / 0.70 23.10 / 0.83 12.27 / 0.72 11.12 / 0.68
Pepper-D 10.57 / 0.42 22.83 / 0.87 14.25 / 0.59 28.23 / 0.89 22.73 / 0.80 20.48 / 0.76 19.35 / 0.70
Pepper-D+GN18 9.71 / 0.18 15.81 / 0.22 13.42 / 0.17 14.73 / 0.22 19.02 / 0.58 19.40 / 0.55 20.03 / 0.63
Pepper-D+GN25 9.08 / 0.14 14.43 / 0.16 12.39 / 0.13 13.62 / 0.16 17.29 / 0.37 18.38 / 0.47 20.55 / 0.60
Town N/A 18.88 / 0.84 16.4 / 0.74 9.47 / 0.71 18.95 / 0.78 17.82 / 0.87 16.64 / 0.81
Town-D 11.14 / 0.43 18.89 / 0.84 15.86 / 0.70 22.71 / 0.94 18.98 / 0.78 24.43 / 0.80 21.83 / 0.69
Town-D+GN18 10.07 / 0.18 14.86 / 0.26 13.22 / 0.19 15.03 / 0.25 17.51 / 0.41 20.25 / 0.60 21.78 / 0.60
Town-D+GN25 10.08 / 0.14 14.05 / 0.21 12.23 / 0.14 13.61 / 0.18 16.32 / 0.32 19.76 / 0.50 23.53 / 0.58
Anhinga N/A 13.69 / 0.67 22.32 / 0.92 8.76 / 0.63 13.76 / 0.67 13.72 / 0.75 10.51 / 0.61
Anhinga-D 12.65 / 0.37 13.70 / 0.68 16.83 / 0.72 19.58 / 0.91 13.76 / 0.67 22.26 / 0.78 18.73 / 0.59
Anhinga-D+GN18 12.68 / 0.27 11.93 / 0.25 15.05 / 0.28 14.09 / 0.29 13.05 / 0.29 22.79 / 0.65 22.72 / 0.66
Anhinga-D+GN25 12.69 / 0.24 11.51 / 0.22 13.70 / 0.23 13.04 / 0.24 12.58 / 0.26 22.30 / 0.56 22.66 / 0.61
Avion N/A 10.50 / 0.56 19.70 / 0.83 14.41 / 0.83 10.54 / 0.63 16.06 / 0.85 15.77 / 0.84
Avion-D 12.90 / 0.78 10.50 / 0.56 14.03 / 0.72 27.59 / 0.99 10.54 / 0.63 28.22 / 0.96 27.17 / 0.93
Avion-D+GN18 9.52 / 0.29 10.24 / 0.22 9.50 / 0.22 19.61 / 0.53 10.83 / 0.42 21.99 / 0.75 22.44 / 0.80
Avion-D+GN25 8.78 / 0.23 10.11 / 0.19 8.89 / 0.19 17.79 / 0.41 10.77 / 0.31 19.50 / 0.63 21.32 / 0.73
Baboon N/A 17.69 / 0.82 17.24 / 0.77 10.94 / 0.73 18.05 / 0.78 12.10 / 0.72 12.43 / 0.63
Baboon-D 9.48 / 0.57 17.68 / 0.82 14.03 / 0.72 29.88 / 0.99 18.05 / 0.78 21.94 / 0.85 21.00 / 0.68
Baboon-D+GN18 9.01 / 0.35 15.34 / 0.46 12.61 / 0.40 16.01 / 0.48 17.59 / 0.62 18.03 / 0.68 21.03 / 0.62
Baboon-D+GN25 8.02 / 0.26 14.51 / 0.38 11.61 / 0.32 14.42 / 0.38 16.67 / 0.50 15.83 / 0.58 19.96 / 0.56
Barnfall N/A 13.16 / 0.73 19.27 / 0.85 8.62 / 0.66 13.33 / 0.69 14.16 / 0.76 13.78 / 0.67
Barnfall-D 11.48 / 0.31 13.17 / 0.72 15.66 / 0.68 21.48 / 0.93 13.35 / 0.69 21.07 / 0.63 18.11 / 0.44
Barnfall-D+GN18 10.93 / 0.15 10.91 / 0.16 13.79 / 0.17 13.63 / 0.17 11.92 / 0.21 20.02 / 0.46 20.61 / 0.43
Barnfall-D+GN25 10.81 / 0.12 10.44 / 0.12 12.66 / 0.12 12.61 / 0.12 11.37 / 0.16 19.71 / 0.40 21.62 / 0.42
Beeflowr N/A 14.85 / 0.76 23.22 / 0.93 9.49 / 0.60 14.84 / 0.71 14.79 / 0.73 14.28 / 0.67
Beeflowr-D 13.77 / 0.47 14.93 / 0.74 18.24 / 0.82 17.32 / 0.79 14.97 / 0.70 27.20 / 0.82 22.95 / 0.73
Beeflowr-D+GN18 12.45 / 0.21 12.28 / 0.17 14.84 / 0.14 13.67 / 0.19 13.56 / 0.41 24.24 / 0.57 24.41 / 0.65
Beeflowr-D+GN25 12.24 / 0.16 11.61 / 0.13 13.34 / 0.10 12.72 / 0.13 12.85 / 0.32 21.03 / 0.43 22.43 / 0.54
Blakeyed N/A 13.94 / 0.62 23.14 / 0.80 11.08 / 0.66 13.88 / 0.51 12.41 / 0.54 11.75 / 0.47
Blakeyed-D 11.60 / 0.51 11.56 / 0.59 16.28 / 0.63 28.75 / 0.86 11.52 / 0.48 25.06 / 0.65 19.75 / 0.53
Blakeyed-D+GN18 11.77 / 0.21 11.46 / 0.22 14.62 / 0.19 13.26 / 0.23 12.50 / 0.39 22.12 / 0.46 22.45 / 0.51
Blakeyed-D+GN25 11.18 / 0.16 10.81 / 0.17 13.24 / 0.14 12.40 / 0.17 11.91 / 0.31 19.70 / 0.38 20.55 / 0.44

Winning Instances N/A 1 / 2 7 / 6 6 / 9 2 / 0 9 / 9 19 / 18
Total Instances N/A 44 44 44 44 44 44
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Figure 3.3: Original standard test images used to compute PSNR.

ization methods (i.e. HE, CLAHE, HE+BM3D) provide superior enhancement given the original

image. When tested with other images (namely, ‘Bird’, ‘Girl’, ‘House’, ‘Pepper’, etc.) as shown in

Table 3.1, HE-based methods generally fared slightly better with higher PSNR and SSIM.

3.4.2 Enhancing artificially darkened images

Figure 3.4B shows output of various methods when enhancement is applied to a ‘Town’ image

darkened with γ = 3. Here, LLNet achieves the highest PSNR followed by GA, but the the other

way round when evaluated with SSIM. The similarity of GA-enhanced image with the original is

expected because gamma readjustment with γ = 0.3 ' 1/3 essentially reverses the process close to

the original intensity levels. In fact, when tested with other images, the highest scores for darkened-

only images are achieved only by one of LLNet, S-LLNet or GA. Note that LLNet is trained on

varying degrees of γ but not with a fixed γ = 3. Results tabulated in Table 3.1 highlights the

advantages and broad applicability of the deep autoencoder approach with LLNet and S-LLNet.

3.4.3 Enhancing darkened images in the presence of synthetic noise

To simulate dark images taken with regular or subpar camera sensors, Gaussian noise is added

to the synthetic dark images. Figure 3.4C and 3.4D presents a gamma-darkened ‘Town’ image
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Figure 3.4: Comparison of methods of enhancing ‘Town’ when applied to (A) original already-

bright, (B) darkened, (C) darkened and noisy (σ = 18), and (D) darkened and noisy (σ = 25)

images. Darkening is done with γ = 3. The numbers with units dB are PSNR, the numbers

without are SSIM.

corrupted with Gaussian noise of σ = 18 and σ = 25, respectively. For this test image, S-LLNet

attains the highest PSNR and SSIM followed by LLNet for both noise levels. Table 3.1 shows that

no other methods aside from LLNet/S-LLNet result in the highest PSNR and SSIM for dark, noisy

images. Histogram equalization methods fail due to the intensity of noisy pixels being equalized and

produced detrimental effects to the output images. Additionally, BM3D is not able to effectively

denoise the equalized images with parameter σ = 25 since the structure of the noise changes during

the equalization process.
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3.4.4 Application on natural low-light images

When working with downloaded images, a clean reference image is available for computing

PSNR and SSIM. However, reference images may not be available in real life when working with

naturally dark images. The experiment was controlled to circumvent the issue by mounting an

ordinary cell-phone (Nexus 4) camera on a tripod to capture pictures in an indoor environment

with both lights on and lights off. The picture with lights on are used as the reference images for

PSNR and SSIM computations, whereas the picture with lights off becomes the natural low-light

test image. Although the bright pictures cannot be considered as the ground truth, it provides a

reference point to evaluate the performance of various algorithms. Performance of each enhance-

ment method is shown in Figure 3.5. While histogram equalization greatly improves the contrast

of the image, it corrupts the output with a large noise content. In addition, the method suffers

from over-amplification in regions where there is a very high intensity brightness in dark regions,

as shown by blooming effect on the computer display in panel 3.5A(vi) and 3.5A(vii). CLAHE is

able to improve the contrast without significant blooming of the display, but like HE it tends to

amplify noise within the images. LLNet performs significantly well with its capability to suppress

noise in most of the images while improving local contrast, as shown in the magnified patches at

the bottom of Figure 3.5.

3.4.5 Denoising capability, image sharpness, and patch size

There is a trade-off between denoising capability and the perceived sharpness of the enhanced

image. While higher PSNR indicates a higher denoising capability, this metric favors smoother

edges. Therefore, images that are less sharp often achieve a higher PSNR. Hence, SSIM is used

as a complementary metric to evaluate the gain or loss in perceived structural information. From

the experiments, a relationship between denoising capability (PSNR), similarity levels (SSIM) and

image sharpness is found to be dependent on the dimensions of the denoised patch relative to the

test image. A smaller patch size implies finer-grain enhancement over the test image, whereas a

larger patch size implies coarser enhancement. Because natural images may also come in varying
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heights and widths, the relative patch size–a dimensionless quantity that relates the patch size to

the dimensions of the test image, r–is defined as:

r =
dp
di

=

√
w2
p + h2

p√
w2
i + h2

i

where quantities d, w, and h denote the diagonal length, width, and height in pixels, with subscripts

p and i referring to the patch and test image respectively. Relative patch size may also be thought

as the size of the receptive field on a test image. From the results, it is observed that when the

relative patch size decreases, object edges appear sharper at the cost of having more noise. However,

there exists an optimal patch size resulting in an enhanced image with the highest PSNR or SSIM

(as shown in Figure 3.6 and Figure 3.7.). If the optimal patch size is selected based on PSNR,

the resulting image will have the lowest noise levels but is less sharp. If the smallest patch size is

selected, then the resulting image has the highest sharpness where more details can be observed but

with the expense of having more noise. Choosing the optimal patch size based on SSIM produces

a more well-balanced result in terms of denoising capability and image sharpness.

We included a natural test image where the US Air Force (USAF) resolution test chart is shown.

The test chart consists of groups of three bars varying in sizes labeled with numbers which conforms

to the MIL-STD-150A standard set by the US Air Force in 1951. Originally, this test chart is used

to determine the resolving power of optical imaging systems such as microscopes, cameras, and

image scanners. For the present study, we used this test chart to visually compare the trade-off

denoising capability and image sharpness using different relative patch sizes. The results are shown

in Figure 3.7.

3.4.6 Prior knowledge on input

HE can be easily performed on images without any input parameters. Like HE, CLAHE can

also be used without any input parameters where the performance can be further finetuned with

various other parameters such as tile sizes, contrast output ranges, etc. Gamma adjustment and

BM3D both require prior knowledge of the input parameter (values of γ and σ, respectively), thus
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it is often necessary to finetune the parameters by trial-and-error to achieve the best results. The

advantages of using deep learning-based approach, specifically using LLNet and S-LLNet, is that

after training them with a large variety of (darkened and noisy) images (with proper choice of

hyper-parameters), there is no need for meticulous hand-tuning during testing/practical use. The

model automatically extracts and learns the underlying features from low-light images. Essentially,

this study shows that a deep model that has been trained with varying degrees of darkening and

noise levels can be used for many real-world problems without detail knowledge of camera and

environment.

3.4.7 Features of low-light images

To gain an understanding on what features are learned by the model, weights linking the

input to the first layer of the trained model can be visualized by plotting the values of the weight

matrix as pixel intensity values (Figure 3.8). In a regular LLNet where both contrast enhancement

and denoising are learned simultaneously, the weights contain blob-like structures with prominent

coarse-looking textures. Decoupling the learning process (in the case of S-LLNet) allows us to

acquire a better insight. We observe that blob-like structures are learned when the model is trained

for the task of contrast enhancement. The shape of the features suggest that contrast enhancement

considered localized features into account; if a region is dark, then the model brightens it based

on the context in the patch (i.e. whether the edge of an object is present or not). On the other

hand, feature detectors for the denoising task appears noise-like, albeit in a finer-looking texture

compared to the on coarser ones from the integrated network, LLNet. These features shows that

the denoising task is mostly performed in an overall manner. Note that while the visualizations

presented in Burger et al. (2012) show prominent Gabor-like features at different orientations for the

denoising task, the Gabor-like features are not apparent in the present study because the training

data consists of multiple noise levels rather than a fixed one. Due to specialization in different

tasks, it is not surprising that S-LLNet achieves superior performance over LLNet at higher noise
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Table 3.2: Average PSNR evaluated on the set of natural dark images enhanced with trained

model of different hyper-parameters and network architecture. The baseline model is marked by

an asterisk (*), whereas the PSNR for the best model is presented in a bolded typeface. ’Btk’ is an

abbreviation of ’bottleneck’ that describes a model that has a decreasing number of hidden units

toward the center.

Model Description Network Architecture (# Hidden Units) PSNR (dB) SSIM
*Batch Size 50 867-578-289-578-867 16.1307 0.6560
Batch Size 500 867-578-289-578-867 16.1101 0.6603
Batch Size 1000 867-578-289-578-867 15.8714 0.6514

Patch Size 13×13 867-578-289-578-867 16.6254 0.6913
*Patch Size 17×17 867-578-289-578-867 16.1307 0.6560
Patch Size 21×21 867-578-289-578-867 17.3355 0.6724
Patch Size 25×25 867-578-289-578-867 16.0448 0.6660

3-layer SDA 578-289-578 15.6375 0.6486
*5-layer SDA 867-578-289-578-867 16.1307 0.6560
7-layer SDA 1156-867-578-289-578-867-1156 16.3170 0.6551
9-layer SDA 1445-1156-867-578-289-578-867-1156-1445 16.3463 0.6380

*Regular, w. Btk. 867-578-289-578-867 16.1307 0.6560
Narrow, w/o. Btk. 289-289-289-289-289 16.6713 0.6619
Regular, w/o. Btk. 578-578-578-578-578 15.7735 0.6557
Wide, w/o. Btk. 867-867-867-867-867 15.2639 0.6526

Narrow 578-289-145-289-578 16.2796 0.6604
*Regular 867-578-289-578-867 16.1307 0.6560

Wide 1156-867-578-867-1156 15.8524 0.6581

levels. The distinction between feature detectors and feature generators is highlighted in Figure

3.9 and a comparison of superior and inferior weights is shown in Figure 3.10.

3.4.8 Hyper-parameters, network architecture, and performance

Table 3.2 shows the average PSNR and SSIM values evaluated on the set of natural dark

images enhanced with the trained model of different hyper-parameters and network architecture.

Note that these are merely the results of exploring the hyper-parameter space to determine how

the selection of hyper-parameters affect the image enhancement performance. The optimal hyper-

parameters are not implemented in the LLNet and S-LLNet models reported above (see Section

3.2.3 for implemented values) and hence there is further room for improvement. From the results,

a relatively smaller training batch size results in higher PSNR, but no clear trend is observed in

terms of SSIM. Smaller batch sizes result in noisier gradient during the update and may help in

escaping local minima during optimization. A patch size of 17×17 resulted in the highest average
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PSNR whereas a patch size of 13x13 resulted in the highest SSIM. This result has been discussed

in earlier sections of this chapter and is consistent with the findings on the relationship between

the relative patch size and PSNR and SSIM. On the other hand, a deeper and narrower network

performed better than shallow and wider network. It has also been found that a bottlenecked

network produces higher PSNR and SSIM than a model with uniform number of hidden units

across layers. The bottleneck region helps in extracting better features during the training phase

and corroborates the findings by Gehring et al. (2013).

3.5 Summary

Feature extraction and data preprocessing (corruption removal) from spatial data has been

attacked using a designed deep learning technique called low light network (LLNet). LLNet is a

variant of the stacked sparse denoising autoencoder that was trained to learn the brightening and

denoising functions from various synthetic examples as filters which are then applied to enhance

naturally low-light and degraded images. Results show that deep learning based approaches are

suitable for such tasks for natural low-light images of varying degree of degradation. The proposed

LLNet (and S-LLNet) compete favorably with currently used image enhancement methods such

as histogram equalization, CLAHE, gamma adjustment, and hybrid methods such as applying HE

first and subsequently using a state of the art denoiser (i.e.,BM3D).
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Figure 3.5: Comparison of methods of enhancing naturally dark images of (A) computer, (B) chalk-

board, (C) cabinet, and (D) writings. Selected regions are enlarged to demonstrate the denoising

and local contrast enhancement capabilities of LLNet. HE (including HE+BM3D) results in over-

amplification of the light from the computer display whereas LLNet was able to avoid this issue.

In the natural case, the best performers in terms of PSNR and SSIM coincide.
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Figure 3.6: Relative patch size vs PSNR and SSIM. The picture with highest PSNR has the highest

denoising capability but least sharp. Picture with lowest r has the least denoising capability but

has the highest image sharpness. Picture with the highest SSIM is more well-balanced.
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Figure 3.7: Evaluation on US Air Force (USAF) resolution test chart. There exist optimal relative

patch sizes that result in the highest PSNR or SSIM after image enhancement (using LLNet). Note

that the result enhanced with histogram equalization is shown to highlight the loss in detail of the

natural dark image (where the main light is turned off) compared to the natural bright image.
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Figure 3.8: Feature detectors can be visualized by plotting the weights connecting the input to the

hidden units in the first layer. These weights are selected randomly.

Figure 3.9: Random selection of weights from the first layer (feature detectors) and weights from

the output layer (feature generators) for the integrated LLNet model trained with a patch size of

21 × 21. Patterns in the output weights are similar to patterns in the first hidden layer weights

since tied weights are used.

Figure 3.10: Random selection of first layer weights from an integrated LLNet model trained in

batches of 1000 and 50, respectively. The superior model (i.e. batch size 50) learns features that

appear more distinctive.
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CHAPTER 4. FEATURE EXTRACTION FROM SPATIAL DATA –

CONVOLUTIONAL SELECTIVE AUTOENCODER (CSAE)

In this chapter, the main part of a proposed convolutional selective autoencoder technique is

presented. The ideas behind it are rigorously and methodically formulated to include how it extends

to previous neural network principles. Thereafter, some of the achievements of the technique are

shown.

4.1 Introduction

Automated labeling of data has been identified as the major challenge of the supervised training

techniques (Bengio et al. (2014)). So far, labeling tasks are usually costly or ineffective except

when the benefit of crowd-sourcing is leveraged. In a “learning by comparison” setting, a learner

properly resolves features that has clear distinctions than those of related features. In that light,

we proposed a selectivity function for automatically discriminating the dataset as an image labeling

task. The idea is to define a rule to discriminate the signal units of interest from those considered as

disturbances in an automated, across-samples basis. The algorithm can serve as a supervised pre-

training where the prior knowledge is automatically factored into the architecture. The function is

mainly applicable in object recognition and detection tasks, with possibility of adaptation to other

classification tasks.

4.2 Selectivity in Deep Networks

Previous computer vision techniques have considered learning from single exemplar (Malisiewicz

et al. (2011)) applied to support vector machines for objects detection. However, exploring the

ability of deep networks for pixel-wise identification via the recent end-to-end training provided by

autoencoders, our selectivity extends image-based exemplar learning to pixel-based or super-pixels
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autoencoder architectures. In order to effectively learn the object at the topmost abstraction level,

knowledge of the examples are necessary for more efficient training of machines. Each vector in

our image is a union of units – those representing the object and those of the undesired objects.

Note that the scale of the units could be at the pixel or the super-pixel level depending on the

connectivity of the pixels to describe the targets.

4.2.1 Mathematical formulation of selectivity

With this criterion, we reduce the complexity of the objective function of a standard con-

volutional network to learning the black box that maps different pixel topographies. Given the

training data made up of input and target pixel pairs (X1, Y 1), · · · , (XP , Y P ) respectively, which

are assumed independent and identically distributed in most of our applications. The dataset is

composed of exemplars, (Malisiewicz et al. (2011)) that are: whole images, patches or super-pixels

that have the full extent of the object of interest, d. Here, however, the patches mostly have the

interest objects, d or unwanted objects, d̃ such that , Y i ⊆ (Y
(s)
d ∪ Y (s)

d̃
) and Xi ⊆ (X

(s)
d ∪X

(s)

d̃
),

since ∃ varieties of d’s and d̃’s that are not captured by the individual examples. The bracketed

subscripts (s) represent the super-pixels extract from the patches of examples and the lower cases x

and y are used for unit levels images and targets such that X
(s)

d(or d̃)
= {xj : j = d(or d̃) ∀ j ∈ Y i}.

Note that the only assumption is the knowledge of what Y is represent, being the training targets.

Probabilistically, the desire was to selectively learn P (yd) that approximates the joint distribution

of P (yd, yd̃). Furthermore, the expression can be imagined at the pixel level by assuming that the

functions are unique to each feature’s class. In such case, selectivity encodes the knowledge of

undesired units by equating their distribution to a uniform 0 distribution. The goal is equivalent

to ensuring that the mutual information between estimate, ŷd and corresponding target, yd are

maximized. Also, it is desired that the machine minimizes the information correspondence between

x
d̃

and corresponding y
d̃
. Selectivity however involves more complexity, being a pixel-level discrim-

ination while most deep learning applications have been tailored to discriminate at the super-pixel

level (Farabet et al. (2013)). In such probabilistic setting, objective function ought to take the
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form arg minθ
∑
P (yd)log(P (ŷd)), but this only learns the function to identify d. Also, note here

that we could have resorted to a distribution around the known pixels for applications having less

informative domain knowledge. The activation rule that is implicitly sent to the deep network

would be to learn a function, F such that some random combinations of xd and x
d̃

in any example

maps to yd and the uniform distribution respectively, in a pixel-wise manner. The oscillation that

may result is reduced by the rectified linear unit activation of deep networks, which incidentally

has similar activations. The selectivity-based function, F is defined as:

F (Xi) =


ŷd, if i = d

0, if i = d̃

(4.1)

The function is similar to clippers in electrical circuits as it dampens when it transitions to the

undesired units. For cases where there is large similarity between the encoded features of xd and

x
d̃

(at the pixel level), the bounds are relaxed by discriminating on the super-pixel level to define

the selectivity function as:

G(Xi) =


X

(s)
d , if i = d

0, if i = d̃

(4.2)

In the above described cases, it is the function F (or G) for all the training examples that we

desire to learn with the convolutional autoencoder network. Clearly, the function serves as a pre-

conditioner for a more object-targeted learning by the network. The selectivity function, F (or G)

would have some obvious disadvantages at units that are on the boundary of the desired objects;

but the architecture used is able to gracefully handle such transitions.

In the test example, the learned functions are applied to the images which consists of both

the desired and undesired objects as in the case in Equation 4.2 in order to learn only the desired

objects. In this case, encoding selectivity for each individual unit would lead to significant feature-

crafting. This is because while in the training sets, the assumption was that each of the pairs

contained in the training data has examples that are composed largely of either d-examples or d̃-

examples only, test samples usually contain both the d-examples and d̃-examples in the same local
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neighborhood at the pixel or super-pixel level. This is usually the case with realistic dataset. Then,

we can apply the model learned from the selectively discriminated training examples to determine

what examples occur at every position of the local neighborhood relatively to its adjacent neighbor

given the knowledge of over-complete kernels.

Lastly, one may note that no assumption concerning the additive or multiplicative nature of the

disturbances to the original pixel has been made in the formulation. A review of the autoencoder

types including training strategies for admitting the selectivity function is provided in the following

subsection.

4.2.2 Convolutional selective autoencoder (CSAE)

CSAEs utilize the benefits of the convolutional autoencoder 2.6.4 to learn the objective for

performing a specific task. One essence of selectivity is to ensure that parameters in convolutional

autoencoders are not identity functions, like the denoising autoencoder Vincent et al. (2008) aims

to avoid. For the convolutional autoencoder, the input, X is replaced with the activation from the

output layer, say Ŷ . In this case, the loss function to be minimized is:

θ∗ = arg min
θ
J(Ŷ , Y ; θ) =


arg minθ J(ŷd, yd), if i = d

arg minθ J(ŷ
d̃
, 0), if i = d̃

(4.3)

The composite cost function, J(Ŷ , Y ; θ) for this case is a squared-error function Subsection

2.5.1.1 that was minimized for parameter update. The demonstrated cases split the composite cost

for each of the pixel classes. Our formulation translates to the assumption that P (yd, yd̃) ∼ P (ŷd)

after the training examples have been normalized in the preprocessing part of the deep architecture.

The optimization and weight update algorithms are therefore suited to the usual schemes that

have been applicable in deeper networks. The robustness in application of the method justifies

the hypothesis since we are able to, in most cases, “effectively” identify the desired objects or

structures. The networks are usually large due to the redundancy in filter sizes and their depths.

Therefore, training is done on Nvidia’s Titan Black and/or Titan X GPU with 2880 and 3720
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CUDA cores respectively, in a machine that is equipped with 16MB video RAM, using the python-

based machine learning frameworks such as Theano, Lasagne and NoLearn (Bergstra et al. (2010b);

Thoma (2016)). Lasagne offers a wide variety of control over the layer types, nonlinearity types,

objective functions, interfacing with Theano and its supporting function. NoLearn, on the other

hand, is a coordinating library for the implementation of the layers in Lasagne which offers model

visualization features.

In the following sections, we discuss and presents results of the convolutional selectivity autoencoder

network as utilized for a cyber-agricultural pest management problem and an electromechanical

combustion problem as a way of validating the effectiveness of the technique.

4.3 An End-to-end Convolutional Selective Autoencoder Approach to

Soybean Cyst Nematode Eggs Detection

The end-to-end convolutional selective autoencoder approach is adapted for this application.

The autoencoder is trained with expert-labeled microscopic images to learn unique features related

to the invariant shapes and sizes of SCN eggs, without any hand-crafting. Its deployment resulted

in an efficient rare object detection framework which aids in automated high-throughput detection

of the SCN eggs. The proposed framework reduces SCN eggs density estimation cost and expedites

the overall phenotyping process significantly in addition to its potential to eliminate the overhead

of Fuschine dye addition. For the specific problem, we adapted the convolutional selective autoen-

coder network: for automated phenotyping on the new impactful plant science application involving

rare object detection in microscopic image frames cluttered with debris (disturbances) that have

great similarities with the objects of interest (typically � 5% SCN eggs among all objects); by a

novel selectivity criterion for efficient training of convolutional autoencoder in rare object detection

applications that are complicated by high egg to debris similarity; through the adaptation of stan-

dard machine learning performance metrics (important for effective communication to the plant

science community) for applications involving image based phenotyping.
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4.3.1 Motivation

There is growing interest by breeders, farmers and agronomists in developing technological tools

to automatically monitor and quantify biotic and abiotic stresses on plants using non-destructive

phenotyping methods in a rapid, high throughput manner. Proponents (Li et al. (2014); Mitka and

Bart (2015)) have analyzed the untapped potential of such technology with methods that leverage

current improvement in resolution of images and sensor data taken from the vulnerable plant or field

sections. An application that can benefit from automated learning of features from image frames

is the detection and quantification of pests called soybean cyst nematode. Soybean cyst nematodes

(SCNs), Heterodera glycines, are unwanted micro-organisms that reduce yields of a major source

of food – soybeans. In the United States alone, approximately $1 billion is lost per annum due

to cyst nematode infections on soybean plants. Experts have conceived methods of mitigating

the losses through phenotyping techniques via SCN eggs density estimation, and then applying the

right control measures. Currently, they rely on labor-intensive and time-consuming identification of

SCN eggs in soil samples processed onto microscopic frames. However, phenotyping a vast array of

fields requires automated high-throughput techniques. From an automation perspective, detection

of rarely occurring SCN eggs in a microscopic image frame with a cluttered background of soil

debris poses a major technical challenge.

Soybean cyst nematodes have been known (F. W. Nutter et al. (2002)) to compete with the

roots of soybean plants for available nutrients causing stuntedness, limiting nodulation of nitrogen

fixations, thus leading to huge yield loss of between 30−100% (Grabau (2011); Tylka (2008)). The

cysts are formed by dead female worms which, prior to dying, already secreted the eggs and still

provide suitable condition for their continuous development. The challenge therefore is to isolate

eggs from many other particles in a soil sample. Breeders have sought to detect and subsequently

determine the egg densities (Tylka (2008)) from microscopic images, hence they engage workers

who manually identify and count the eggs that appear on a microscopic plate after some initial

processes that would be described. However, it is tedious, time-consuming and worsened by being

significantly error-prone especially when the workers become fatigued. As shown in Figure 4.1, the
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objects of interest are largely similar to the soil debris on those frames. Thus, isolating the SCN

eggs from other undesired non-eggs particles on microscopic image frames is a complex rare object

detection problem that have enormous plant science implications.

a b
Figure 4.1: Plate a) Shows an example of a frame with eggs in purple boxes and unwanted particles

on a MATLAB -based GUI for tool-labeling of plant pathologists-identified eggs and Plate b) shows

the ground truth labels derived.

In the past, expensive GIS method (F. W. Nutter et al. (2002)) have been used to estimate the

density. Various computer vision-based attempts have not been reported due to their failure on the

problem. The current image analysis by Syed (2015) included some smart feature engineering based

on shape, size and color of the SCN eggs to achieve within 10% of the expert count. Importantly,

they also required the overhead cost of adding the Fuschine dye to aid the algorithm identify the

features.

4.3.2 Algorithm

A deep convolutional autoencoder improvement of a previously applied stacked denoising au-

toencoder (Lore et al. (2017)) was trained to suppress undesired parts (non-egg objects) of an

image frame while allowing the desired parts (egg objects) for efficient object detection requires an

extra selectivity criterion. As shown in Figure 4.3, selectivity is added to supervise autoencoder.

The criterion allows the autoencoder to propagate an egg unit if and only if it is fully seen in a
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Figure 4.2: Convolutional autoencoder architecture. Letters are used to describe the layer types,

c- convolution, m-maxpooling, r – reshape, u – unpooling and d – deconvolution layers respectively

and the digits denote the numbered position of that layer among other layers of same alphabet.

patch, and to reject the example either when there is no egg present in a patch or there is an egg

that is neither full nor centered. It is included in the algorithm by adding a function that teaches

the autoencoder to mask pixels of eggs in the former and propagate pixels in the latter. From

a modeling architecture perspective, multi-scale convolutional networks by Farabet et al. (2013)

for scene labeling are performed on super-pixels while selectivity requires pixel level. Like most

semantic segmentation approaches (Farabet et al. (2013); Pinheiro and Collobert (2014)), selec-

tivity helps to gain more benefit from higher resolution analysis which is required for detection

in this close similarity type scenario. The pixel-level classification in turn required an end-to-end

type autoencoder where the propagation on pixel levels are projected down to the output layer to

solve the task. Also, it is clear that applying multi-scale architectures to this problem would be

detrimental to the performance objective of a selectivity autoencoder since partially seen eggs are

shown as eggs in this case. Given an M × N dimensional image frame, P number of patches of
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m × n-dimensional were extracted from the image ensuring adequate localization of algorithm on

frames. While an original patch is denoted by Xi, the corresponding patch desired to be selec-

tive of objects is denoted by Y i for i = 1, 2, · · · , P . The only pre-processing performed on data

pairs {(X1, Y 1), · · · , (XP , Y P )} is normalization to center the pixel intensities around the image

statistics. After that, we enhanced egg-similar shapes, sizes and poses only, based on background

knowledge with the selectivity criteria through a selectivity function. Those eggs not matching the

selectivity criteria are considered to be included as negative examples since such examples would

then share many of the qualities of the disturbances. Then, the convolutional selective network

architecture described in Subsection 2.6.3 and tailored to this application as shown in Figure 4.2

was applied.

4.3.3 Dataset and implementation

4.3.3.1 Dataset generation

The dataset is typically generated using a 1-inch diameter soil probe to collect soil. Soil was

collected during Fall 2015 from random placement of soil probe within several farms in the state of

Iowa, where there are varying levels of SCN infestation. Soil samples are mixed together in a bag

and washed with water. SCN eggs and cysts are partially separated from the soil in a semiautomatic

elutriator Bryd et al. (1976). A motorized rubber stopped Faghihi and Ferris (2000), an example

of a physical method is then used for releasing the eggs from the cysts. Purple fuschin dye is

thereafter applied to the partially cleaned soil containing the eggs. 1ml sample is placed which in

each hemocytometer and images of the sample were taken using a camera, or eggs counted under a

microscope. About a thousand images were collected using this protocol. These images were then

labeled by trained plant-pathologists. The images were labeled by carefully screening each of them,

and identifying the location of every SCN egg present in that image. To enable efficient labeling, a

MATLAB -based app with graphic user interface (GUI) shown in Figure 4.1 was created to simplify

identification and marking of the SCN eggs location in the image. The app design included a user-

friendly way of selecting images, zoom functions, drawing a rectangle region of interest over the
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eggs, saving the location and skipping an image if no SCN eggs were found. The app was deployed

on a touch screen enabled device like the Microsoft Surface Pro, allowing the plant-pathologists

who detects the eggs physically to just use their fingertips for rapid labeling. The bounding boxes

of every SCN egg in ≈ 1000 images were extracted and stored as training examples for the network.

network

test patches

inference

results

labeled

patches

training
patches

training
reconstructed

patches

error back-propagation
selectivity

Figure 4.3: Flow diagram of algorithm’s implementation.

4.3.3.2 Training and Implementation

Training dataset was divided into the cropped and un-cropped images with image labels. All

datasets had patch sizes, (m× n) = (16× 16). The total set available to train the model is shown

on Table 4.1 after the data augmentation which includes rotation of each egg between 0− 180◦ to

cover the input space of its variety in orientation as this helps reduce parameters to learn. Training

dataset was made up of 80% for training and 20% for validation.

Best learning rate for algorithm was found to be 0.002 at momentum rate of 0.975 and algorithm

was trained to 200 epochs with the opportunity for the SGD update depending on the accuracy

level. The training was done on GPU Titan Black with 2880 compute universal device architecture

(CUDA) cores, 6GB memory, in the theano (Bergstra et al. (2010b)), lasagne and nolearn wrappers
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Table 4.1: Training set breakdown: cropped – S, translated – T, rotated – R and labeled – L.

set type original dimension final dimension
s,t,r & l 45432× 10 rotations 454320× 16× 16
s, r & l 2524× 10 rotations 25240× 16× 16
l only 634× 480× 640 760800× 16× 16
Total 1240360× 16× 16

Thoma (2016) of python based on improvements described in section 4.3.2. Lasagne had the

layer details, nonlinearity types, objective function, theano extension and many more built into

it. Nolearn on the other hand was a coordinating library for the implementation of the layers in

lasagne including the visualization aspects. In the training section, a (c × c) = (3 × 3) filter size

and a non-overlapping (p × p) = (2 × 2) were found to be experimentally less costly to produce

the results. Algorithm training was done in batches of 128 patches which was found to be suitable.

The trained model had overall 743209 learned parameters.

4.3.3.3 Testing set

Test sets available had dimensions, P = U × V , at patch sizes, m × n and strides of sh × sw,

where U and V are the final vertical and horizontal number of patches respectively. The dimensions

are expressed as: U = (M−m+sh)
sh

and V = (N−n+sw)
sw

where M ×N represent the size of each image

frame. The flow chart in Figure 4.3 shows the schematics of the overall implementation of the

tool-chain including patching, cnn training and the post-processing steps.

4.3.4 Results and discussions

In this section, performance of the convolutional selective auto-encoder is presented and an-

alyzed with respect to the SCN egg detection problem. In order to reduce the false alarms that

occur when non-egg particles have high degree of similarity with the eggs, a threshold value close

to the maximum is applied to all the results. Our analysis is divided into two main parts: de-

tection effectiveness (from an algorithmic perspective) and computation time and accuracy (from

an application requirement perspective). Before discussing the algorithm’s detection effectiveness,
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a justification of the pipeline’s ability to reproduce the patch blocking training is shown in the

Figure 4.4. Note that this tracks back to the selectivity criterion described in Section 4.2 where

pose centering was included in the training set in order to reject disturbance-like SCN eggs unless

such egg is fully centered by a neighboring scanning filter.

a b c

1

2

Figure 4.4: Plate 1(a) uncentered patch, 1(b) ground truth, 1(c) algorithm output demonstrating

the rejection capability for pose uncentered SCN eggs; 2(a) centered patch, 2(b) ground truth and

2(c) algorithm output demonstrating selectivity of our algorithm on the same translated SCN egg.

4.3.4.1 Detection effectiveness

Egg detection results obtained from the cnn-based tool-chain for some of the testing sets are

reported in Figure 4.5. Results shown on plates of Figure 4.5a and 4.5b, where the algorithm

captures the eggs (only) in all but one case shows its effectiveness in suppressing the neighboring

non-egg particles. The properties of shape, pose and illumination were evaluated by the algorithm

to differentiate the non-egg particles from the eggs substances. This would especially be true in

the local neighborhood of the eggs where any influence of highly similar clutters would easily have

worsened the result. A common thresholding gray-scale value of 180 was used for two observed

reasons; 1). the set of egg shapes and sizes are in-exhaustive, such that the training examples

may not contain all varieties of SCN egg sizes and types, and 2). the optimization does not
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Figure 4.5: Detection results with purple boxes indicating correctly labeled eggs, yellow and blue

boxes show missed detections and false alarms respectively.

completely reduce the training error to zero. With the threshold set depending on level of frame

clutter, it is encouraging that the algorithm is able to visually signify high confidence level for egg

particles and low confidence for disturbances that are really similar to eggs. Farmers may thus

make their own judgments on some of the probable defects in locating the eggs to remove the bias

in detection. We have highlighted the only miss and false alarm on frame II to show how similar

a disturbance usually is to the eggs. The effects of other smaller clutters have been eliminated by

the addition of selectivity criterion during training. Note that we however have disregarded that

and reported the result without any individual frame thresholding. A possible shortcoming of our

proposed framework could be the non-detection of boundary situated eggs. However, zero-padding

at boundaries is an option included to extend each test frame beyond its boundaries. This ensures

that those eggs with edges directly on the boundary of the frame are centered. The result of such

padding is shown in Figure 4.6, but this has an extra cost of having more patches which may not

always be beneficial for the desired inferencing speed. Figure 4.6 shows an instance of a boundary

situated egg. A low activation of the plate (c) causes a missed detection of the boundary situated egg
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due to lack of zero-padding at the boundary, whereas end correction enables a successful detection

as shown in plate (d).

a

b

c

d
Figure 4.6: Boundary situated object (egg) scenario: (a) test frame, (b) ground truth with egg

shown in a purple box, (c) missed detection (shown in yellow box) due to lack of boundary padding

and (d) successful detection (shown in purple box) as a result of end correction.

4.3.4.2 Computation time and accuracy

While training the cnn model on the data sets takes several hours, inferencing on new frames

is faster as required for high throughput operation. Testing patches were created with an adequate

strides of (sh = 2, sw = 2) particularly required for the level of clutter. A (sh = 4, sw = 4) for

instance would mean that there is higher chance of having partially enclosed eggs. With smaller step

sizes however accuracy increases at a cost of increased complexity and consequent time increases.

Formally, the computation complexity for prediction due to the patching step can be described as:

O(
(M −m+ sw)× (N − n+ sw)

sh × sw
) ≈ O(M ×N) (4.4)

Table 4.2 shows the detection times required for an image frame with different patch strides. A

well-trained expert plant-pathologist is estimated to take in the order of 5 minutes to examine a

frame while the worst detection time of the algorithm for strides (sh = 1, sw = 1) shown would be
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for extremely cluttered image frame. The gains recorded are usually over large number of images

covering the infected land area. In most test cases, the (2 × 2) stride provides a good trade-off

Table 4.2: Detection time required for an image frame with different patch sizes.

stride P - #of patches/frame detection time(sec)
1× 1 290625 236
2× 2 72929 55
4× 4 18369 14
8× 8 4661 5
16× 16 1200 2

between computation time and accuracy. Typical performance metrics used for object detection

tasks such as the accuracy and the confusion matrix may be inadequate due to the overwhelming

presence of non-egg particles. Breeders usually consider certain metrics to be more significant than

others. Therefore, we adapt some of the standard classification performance metrics in order to

effectively communicate results to them. The metrics used are: average detection accuracy, ADA

=
average detection/frame

average actual eggs/frame

average alarm-to-egg ratio, AAER

=
average false alarms/frame
average detection/frame

average miss-to-egg ratio, AMER

=
average misses/frame

average detection/frame

average precision, AP

=
average detection/frame

average detection/frame+ average false alarm/frame

The result for all test frames is computed and shown in Table 4.3 based on over 100 unseen

frames. Note that the selected threshold gives a higher preference to the detection accuracy com-

pared to lowering false alarms. The rationale is that with a low missed detection probability, the

resulting frames can be quickly examined by the experts to reject the false alarms (which is drasti-

cally low in number compared to the non-egg objects in the original frames) and still have a reliable
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Table 4.3: Performance metrics for SCN egg detection problem.

Standard Metric Adapted Metric % Significance

Recall ADA ≈ 100 This is an accuracy measure as the

breeders are interested in knowing

how close to the true number of

eggs an algorithm can detect. The

level of accuracy affects their timely

and correct action in order to re-

duce the overall yield loss in soy-

bean farms. Note, ADA is approxi-

mately 100% as the amount of false

alarm and missed detection com-

pensate for each other.

False positive ratio AAER ≈ 5 It indicates the percentage of de-

bris that the algorithm misclassi-

fies as eggs. Breeders are interested

in reducing false alarms such that

their control actions do not become

overpowering and have unnecessary

side-effects.

False negative ratio AMER ≈ 5 It indicates the percentage of eggs

that the algorithm misses to de-

tect. Breeders are interested in re-

ducing such missed detections such

that their control actions do not be-

come insufficient and result in yield

loss,

Precision AP ≈ 96 It indicates the accuracy level from

the algorithmic design perspective,

the goal is to increase the detection

accuracy while reducing the amount

of false alarms.



97

count of eggs. One of the assumptions of this selective autoencoder framework is that the patch

size must be at least same or larger compared to the size of the largest SCN egg to be detected.

Subsequently, the algorithm has been tested to perform similarly on several more images than could

be reported because of the non-availability of ground truth.

In summary, an end-to-end convolutional selective autoencoder approach was leveraged for a

complex rare object detection problem in the domain of automated phenotyping. The embedded

selectivity criterion enabled the autoencoder performance on the task. Also, hyper-parameters

for the convolutional network are meticulously explored for the critical plant science problem of

automated phenotyping of a particular soybean biotic stress on microscopic images containing soil

samples. The machine learning pipeline uses expert-labeled training examples (with the possibility

of human errors) and can serve as a decision support tool that has potential of saving enormous

amount of time for agricultural/plant scientists in characterizing a significant disease affecting

soybean yield in the United States. Such automated, high-throughput phenotyping of the SCN

eggs can also assist farmers to determine the soybean varieties or cultivars that are resistant to

the stresses induced by the worm. These resistant varieties can then be reproduced for planting

with high assurance of minimal yield losses to the infections from SCN. From a machine learning

perspective, a typical image frame in this application mostly contains objects that are extremely

similar in all properties to the objects of interest (SCN eggs). Features hand-crafting constitutes

a very difficult proposition in those scenarios, hence deep learning technique was the appropriate

choice. Some of the future plans at the time of research submissions were to: (i) improve pre-

processing the object patches via learning optimal transformation for a more efficient detection;(ii)

adapt toolchain for general rare object detection and estimation; (iii) develop an easy interface

such as a smart phone app for plant scientists/farmers to estimate the densities of eggs in an online

fashion.
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4.4 Prognostics of Combustion Instabilities from Hi-speed Flame Video using

A Deep Convolutional Selective Autoencoder

In this research, we developed a deep convolutional selective autoencoder-based anomaly (early)

detection framework for the crucial physical process of combustion for an improved understanding

of the underlying complex physics. This was achieved by capturing the rich information in hi-speed

flame video for instability prognostics. In this context, the autoencoder is trained to selectively

mask stable flame and allow unstable flame image frames. Performance comparison is done with

a well-known image processing tool, conditional random field that is trained to be selective as

well. For comparison purpose, an information-theoretic threshold value is derived. The proposed

framework is validated on a set of real data collected from a laboratory scale combustor over varied

operating conditions. The network effectively detects subtle instability features as a combustion

process makes transition from stable to unstable region.

The contributions of the research are summarized as follows.

• A convolutional selective autoencoder framework based on emerging deep learning techniques

is proposed for a significant PHM application – early detection of combustion instability;

• The method avoids extensive expert-guided feature handcrafting Farabet et al. (2013) while

addressing a complex physical phenomenon like combustion to discover coherent structures

in flames images;

• The proposed framework is able to learn from high dimensional data sets (e.g., high speed

video) of most applications and provides a platform for determining the degree of relationship

between the states of two temporally close observations;

• A metric to desired level of granularity is constructed to track the onset of combustion in-

stability and detect pre-transition phenomena such as ‘intermittence’. Intermittence is a

temporary (of the order of millisecond, equivalent in this case to few video frames) blast of

instability characterized by small and partially observable coherent structure;
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• Extensive validation and comparison using CRF technique are provided based on laboratory-

scale combustion data collected under various realistic operating conditions.

4.4.1 Motivation

Combustion instability was found to be a significant anomaly characterized by high-amplitude

flame oscillations at discrete frequencies that reduces the efficiency and longevity of aircraft gas-

turbine engines. Full-blown instability can be differentiated from stable combustion via video

analysis with high confidence because unstable combustion flames show distinct coherent struc-

tures similar to ‘mushroom’ shapes. But it is extremely difficult to detect an onset of instability

early due to fast spatiotemporal transience in the video data. Therefore, the instability detection

problem boils down to an implicit soft labeling problem where we train a deep model using hi-speed

flame videos with explicit labels of stable and unstable flames such that it recognizes the onset of

instability early as the combustion process makes transition from a stable to unstable region.

Combustion instability reduces the efficiency and longevity of aircraft gas-turbine engines. It

is considered a significant anomaly characterized by high-amplitude flame oscillations at discrete

frequencies. These frequencies typically represent the natural acoustic modes of the combustor.

Combustion instability arises from a positive coupling between the heat release rate oscillations

and the pressure oscillations. Coherent structures are fluid mechanical structures associated with

coherent phase of vorticity (Hussain (1983)). The generation mechanisms of the structures vary

system wise, causing large scale velocity oscillations and overall flame shape oscillations by curl-

ing and stretching. These structures can be caused to shed–or be generated–at the duct acoustic

modes when the forcing (pressure) amplitudes are high. There is a lot of recent research interest on

detection and correlation of these coherent structures to heat release rate and unsteady pressure.

The popular methods resorted for detection of coherent structures are proper orthogonal decom-

position (POD) (Berkooz et al. (1993)) (similar to principal component analysis (Bishop (2006))

and dynamic mode decomposition (DMD) (Schmid (2010)), which use tools from spectral theory

to derive spatial coherent structure modes.
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The thermo-acoustic instabilities arising in combustion processes cause significant deterioration

and safety issues in various human-engineered systems such as land and air based gas turbine

engines. The phenomenon is described as self-sustaining and having large amplitude pressure

oscillations with varying spatial scales of periodic coherent vortex shedding. Early detection and

close monitoring of combustion instability are the keys to extending the remaining useful life (RUL)

of any gas turbine engine. However, such impending instability to a stable combustion is extremely

difficult to detect only from pressure data due to its sudden (bifurcation-type) nature. Tool-chains

that are able to detect early instability occurrence have transformative impacts on the safety and

performance of modern engines.

Previous works have modeled it with power-law distribution, small world-like nature (Okuno

et al. (2015)), nonlinear dynamics such as bifurcation and limit cycle properties (Nair et al. (2014))

or using physical properties such as Rayleigh’s (or Pseudo-Rayleigh (Okuno et al. (2015)) index

computed at varying frequency and operating condition (Poinsot et al. (1987)) and phase between

quantities, which are neither generalizable in all cases nor easily adaptable for automated identi-

fication of the structures. The chaos at the flame front may be responsible for this observation.

As the chaos becomes fully developed in the unstable region, the evolution becomes almost un-

predictable via models. Data-driven techniques are more appealing for analyzing the instability

onset. Statistical methods have been developed to indicate the onset of transitioning of combustors

from stable regimes. Such statistical approaches have explored correlation properties (covariance

matrices) or higher order statistics such as skewness and kurtosis (Brock and Carpenter (2006);

Bergland and Gentz (2002)) for chaotic interactions. The approaches are however reported (Fox

and Whiteside (1987)) to be suitable for the analysis of non-fully developed structures. A possible

reason is the assumption that the best explanatory features can be captured by a single space

(or scale) of the data using a known statistical order. The properties of fully-developed structures

(chaos, bifurcations and limit cycles) are completely time varying (as well scale varying). Therefore,

the statistical model required to handle such cases have to be robust to handle such chaos in the

coherent structures. Also, the oscillation pathways involved in the thermo-acoustic oscillations are
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found (Nair et al. (2014)) to transition via chaos from stochastic to periodic with varying mixture

equivalent ratios. Spectral methods have also utilized signal decomposition into mode spectra and

frequency resolution (Richecoeu et al. (2012)).

It is still not common to apply the cutting edge improvements of deep learning towards de-

veloping advanced Prognostics and Health Monitoring (PHM) algorithm for typical engineering

applications. In the research, we proposed a novel selective autoencoder approach within a deep

convolutional architecture to analyze hi-speed flame videos for early detection of combustion in-

stability in a gas turbine engine. Whereas traditional PHM algorithms mainly use time series

data (e.g., pressure and temperature etc.). For this purpose, the proposed approach attempts to

advance PHM via capturing the rich information of hi-frequency video. The approach performs

implicit labeling in order to derive soft labels from extreme classes that are explicitly labeled as

either positive or negative examples. This particular property is significant for tracking continuous

temporal phenomenon such as the transition from combustion stability to instability, where labels

of extreme states (stable or unstable) are available but intermediate state labels are not. Explicit

labels are utilized to selectively mask critical features while allowing other features to remain. Fig-

ure 4.7 shows gray-scale images describing typical gradual development of instability at the stated

parameters in the swirl-stabilized combustor used for the experiment.

Figure 4.7: Gray-scale images of gradual time-varying development of instability structure at two

different parameter values.
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As an application of the network for detecting the level of instability in an assumed stable flame

frame, image labeling was explored. Labeling (e.g., structured and implicit) can be considered

a multi-class classification problem (Erdogan (2010)). For example, three-stage Hidden Markov

Models (HMM) were used for handling speech recognition (Rabiner (1989)) problems, parts of

speech tagging (Meyer (2012)) and sequence labeling because they derive the relationships from

observations-to-state and state-to-state in dynamic systems. Maximum Entropy Markov Model

(MEMM), a discriminative modification of HMM, was introduced to overcome the latter’s recall

and precision problems especially in labeling texts. In those models, conditional probability of the

desired labels are learned directly based on the uncertainty maximization idea. Applications of

MEMM for natural language processing can be found in (Berger et al. (1996)).

Semi-supervised training for classification takes advantage of the labels at the final layers. A

variant of structured labeling by (Kulesza et al. (2014)) called implicit labeling is used to derive

soft labels from extreme classes that are explicitly labeled as either positive or negative examples.

Explicit labels usually can be utilized to selectively mask one feature, especially that one is not

interested in while parsing the class of interest. However, explicit labels on its own can only serve

as a classifier for intrinsic classes in the test sets learned from the training set.

Explicit Label
Class: “Stable”

Explicit Label
Class: “Unstable”

Implicit Labels

Figure 4.8: Illustration of implicit method of generating soft labels.

Implicit labeling considered are similar to the sequence labeling (Erdogan (2010)) with an

extra constraint of utilizing prior knowledge provided only by explicit label. It is then fused

with convolutional autoencoder architecture algorithm described in Section 2.6.3 to determine the

intermediate or transition phases – a mixed breed of a dog and a wolf for instance – and more
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importantly to what degree is the animal a dog or a wolf. Thus, it attempts to derive soft labels

from expert-informed, hard-mined labels as illustrated in Figure 4.8 with a composite architecture.

Due to “label bias” defects of MEMM, a Conditional Random Field (CRF), which is a joint

Markov Random Field (MRF) by Lafferty et al. (2001) of the states, conditioned on the whole

observations is later explored. It enabled considering the global labels of the observation as against

localization of labels of MEMM (Erdogan (2010)). However, labeling in this case is made com-

putationally complex by the relaxation of statistical independence assumption of the observations

which most of the models assume.

Recurrent Neural Networks (RNNs) have been utilized for sequence labeling problems due to

its cyclic connections of neurons (Graves (2014)) as well as its temporal modeling ability. Although

earlier construction of RNNs is known to have short ranged memory issues and a restrictive uni-

directional information context access, formulation of a bidirectional Long Short Term Memory

(LSTM) (Graves and Schmidhuber (2005)) resolved such issues. However, this construction adds

to the complexity of the model significantly as typically two RNNs get connected through the same

output layer.

From the application standpoint, early detection of instability in the combustion chambers

of dynamic systems aids anticipative actions for reducing its consequent effects. Visualizing the

features that characterizes the intermediate frames of its spectrum is an important approach to

unravel the processes that precede instability. The authors in (Sarkar et al. (2015c)) introduced

Deep Belief Networks (DBN) as a viable technique to achieve the aim with a view to exploring

other machine learning techniques for confirmation. They improved on that by applying a modular

neural-symbolic approach (Sarkar et al. (2015b)) in another publication.

Conceptually, this is similar to cognitive psychologists’ description of human reasoning in object

classification (Tenenbaum et al. (2011)). An example is to consider how a child is taught on intrinsic

classes. A similar problem is how to detect a cross breed of dog and wolf and how close the animal is

to either of the classes. From an application standpoint, an early detection of engine’s combustion

instability may be useful for computing the instantaneous values of the remaining useful life, but
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the computation is partial since other physical factors of engine use are also important. Therefore,

remaining useful life (RUL) computation is beyond the scope of the present problem.

4.4.2 Algorithm

In this section, the algorithms for sequence labeling are described. We provide a little more

details of the convolutional autoencoder and its interface with the selectivity criterion. Subse-

quently, a brief background on the conditional random field (CRF) algorithm is provided. Then,

we discuss the information theoretic metrics that facilitate image dimensionality reduction, and the

basis for our threshold computation. The end-to-end convolutional selective autoencoder that was

tailor-made for the application is shown in Figure 4.9. It was adapted for the current application.
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Figure 4.9: Structure of the convolutional autoencoder with selectivity masks. The encoder portion

extracts meaningful features from convolution and sub-sampling operations, while the decoder

portion reconstructs the output into the original dimensions through deconvolution and upsampling.

Best viewed on screen, in color.

Given an M ×N dimensional image frames and corresponding ground truth labels (one of the

two classes), explicit labels are generated by selectively masking frames with the undesired class

with black pixels. Hence, N pairs of input-output pairs {(Xi, Y i)} for i = 1, 2, · · · , N are generated

where X represents the original images, Y are the masked frames that are considered explicitly as
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ground truth. Pre-processing was done by normalizing the pixel intensities in images to have zero

mean and unity standard deviation.

4.4.2.1 Conditional random field (CRF)

CRF is another class of well-studied (Domke (2013)) and formulated models for labeling prob-

lems. CRF is an improvement on the Markov Random Field, MRF where one is interested in

determining the conditional probabilities of newer observation such as our test data given the

knowledge of previous ones such as the explicit labels. The benefits of CRF is its improved learning

over the likelihood estimation by including inference approximation. The algorithms have been

shown (Barbu (2009)) to perform well on complex image problems such as image denoising task as

well as being robust to model misspecification. Therefore, we also incorporated selectivity condition

into the CRF in a similar way to that of CAE.

4.4.2.2 Instability metric

Similar to that presented in (Liu et al. (2016)), a metric based on the Kullback-Liebler (KL)

divergence (Kullback and Liebler (1951)) is chosen to measure the distance of the results from the

image frames in each transition protocol from the expected result of a stable flame frame. This

yields a KL distance, z for each image frame, I ∈ I, where I represents the set of input images

frames. It can be expressed mathematically as,

z(I) =
∑
i∈I

lim
T(i)→0+

I(i)log
I(i)

T(i)
(4.5)

where i represents each pixel in the image frame and T represents the training label/target image.

The limit helps to drive a particular flame image pixel values to zero in the stable combustion

region. This physically corresponds to taking the distance of each image from the reference of the

stable flame. The present metric has the advantage of using a common reference for all the test

transition protocols rather than being specific to a particular image frame within one test protocol

(Akintayo et al. (2016b)).
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4.4.3 Dataset and implementation

In this section, attempts at solving the problem by describing the dataset are motivated, the

experimental setup for gathering the data and how it is collected. We also describe the imple-

mentation of the two competing algorithms by explaining the choices that were made and stating

the important selected parameters for such choices. Finally, the threshold values for analyzing the

results are determined.

4.4.3.1 Dataset collection and experimental setup

To collect training data for learning coherent structures, thermo-acoustic instability was induced

in a laboratory-scale combustor with a 30 mm swirler (60 degree vane angles with geometric swirl

number of 1.28). Figure 4.10(a) shows the setup and a detailed description can be found in (Sarkar

et al. (2015c)). In the combustor, 4 different instability conditions are induced: 3 seconds of

hi-speed videos (i.e., 9000 frames) were captured at 45 lpm (liters per minute) FFR (fuel flow

rate) and 900 lpm AFR (air flow rate), and at 28 lpm FFR and 600 lpm AFR for both levels

of premixing. Figure 4.10 (b) presents sequences of images of dimension 100 × 237 pixels for

unstable (AFR = 900lpm, FFR = 45lpm and full premixing) state. The flame inlet is on the right

side of each image and the flame flows downstream to the left. As the combustion is unstable,

Figure 4.10 (b) shows formation of mushroom-shaped vortex (coherent structure) at t = 0s to

t = 0.001s and the shedding of that towards downstream from t = 0.002s to t = 0.004s. For

testing the proposed architecture, 5 transition videos of 7 seconds length were collected where stable

combustion progressively becomes unstable via ‘intermittence’ phenomenon (fast switching between

stability and instability as a precursor to persistent instability) by reducing FFR or increasing AFR.

The transition conditions are as follows (all units are lpm): (i) AFR = 500 and FFR = 40 to 28,

(ii) AFR = 500 and FFR = 40 to 30, (iii) FFR = 40 and AFR = 500 to 600, (iv) AFR = 600 and

FFR = 50 to 35, (v) FFR = 50 and AFR = 700 to 800. For clarity, these data sets are named as

50040to38, 50040to30, 40500to600, 60050to35, and 50700to800 respectively for analysis in the subsequent

sections of this chapter.
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t = 0 s t = 0.001 s t = 0.002 s

t = 0.003 s t = 0.004 s

(a) (b)

Figure 4.10: a) Schematics of the experimental apparatus. 1 - settling chamber, 2 - inlet duct,

3 - inlet optical access module (IOAM), 4 - test section, 5 & 6 - big and small extension ducts,

7 - pressure transducers, Xs - swirler location, Xp - transducer port location, Xi - fuel injection

location, (b) Visible coherent structure in grayscale images at 900 lpm AFR and full premixing for

45 lpm FFR.

However, Table 4.4 is a summary of the various factors and the characteristics of the flame

videos that results from the experiments. Note that the experiments were conducted using a swirl-

stabilized combustor, but such experiment could potentially be replicated for observations from a

bluff-body stabilized Nair et al. (2014) combustor.

4.4.3.2 Training process

In training the networks, 63, 000 gray-scale frames having dimensions 100 × 237 are resized to

16× 16 for computational simplicity. From Table 4.4, total of 35, 000 frames is labeled stable while

the remaining 28, 000 were labeled as unstable. These images were a combination of datasets with

different premixing lengths of either 90mm or 120mm and a wide range of air and fuel LPMs for

which the combustor is either in a stable or an unstable state. The whole training dataset is divided

into two parts: 75% of it is used to train the algorithm, while 25% is held out for validating their

results and setting our thresholds.

CAE: The parameters of the convolutional autoencoder used include learning rate of 0.0001

with momentum = 0.975 is found to train the model best in the Nesterov based stochastic gradient

descent formulation. The network is trained to 100 epochs in order to conveniently strike a good

minima of the validation error. Training, a filter of c× c pixels (c = 3 in the implementation) and
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Premixing length Fuel flow rate Air flow rate State

(mm) FFR (l/min) AFR (l/min)

90

28 600 Unstable

45 450 Stable

45 900 Unstable

60 600 Stable

120

7.5 50 Stable

28 600 Unstable

45 450 Stable

45 900 Unstable

60 600 Stable

Table 4.4: Breakdown of the experimental dataset used for training the CSAE and SCRF algorithms

showing how different combination of factors result in either stable or unstable states.

a non-overlapping p× p (p = 2) maxpooling were found to be experimentally less costly to produce

the results. Algorithm training is done in batches of 128 training examples which is found to be

suitable via cross validation.

 Results 

Unstable 

Stable 
Test Input 

Trained Model 
Temporal  

Progression 

Figure 4.11: Schematics of implementation of trained network on transition test data.

The architecture in Figure 4.9 shows how the layers are interlinked in the training stage which

leads to an overall of 416, 779 learned parameters. From this point onwards, CAE model that is

trained to be selective is referred to as convolutional selective autoencoder (CSAE).

CRF: In training the linear to linear type conditional random field, the main hyper-parameters

are again the loss function which usually is approximated and how the gradient of such objective
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function are computed. For the present problem, based on multiple trials for hyper-parameter,

we found the loopy variant of the truncated tree re-weighted (TRW) belief propagation a good

inference type for the problem. Furthermore, for better performance, we chose a clique type loss

because of the benefits over simple univariate type loss. A quasi-netwon method, Broyden-Fletcher-

Goldfarb-Shanno (BFGS) was chosen to optimize its error backpropagation. The algorithm is also

implemented in batches of 512 to reduce computation time, and in a gradual fashion while the

regularization parameter used was 0.0001. The model resulted in 8064 cliques. Subsequently, like

the CAE, we refer to a CRF model that is trained to be selective as selective conditional random

field (SCRF).

4.4.4 Threshold determination

Given the models learnt from each of the algorithms, CSAE and SCRF individually, with the

training sets as illustrated in Figure 4.12, the algorithms are separately validated on the validation

set. The validation result for each algorithm is used to determine the value of the instability metric,

z at which transition takes place, called transition threshold. This is taken as the upper limit of

the 95% confidence interval (CI) for the distribution of z (see Equation 4.5) for stable flame frames.

The schematics in Figure 4.12 summarizes how it is implemented for each algorithm. We note that

this helps to utilize expert knowledge regarding the stable and unstable regions to determine the

start of transition from the stable region.

Note that these are derived by replacing I in Subsection 4.4.2.2 with the known stable part in

the validation results.

4.4.5 Results and Discussions

In this section, results obtained from the algorithms are discussed and analyzed. The subsec-

tions are arranged to build up the argument for early detection of unstable region’s properties in

frames. Such unstable flame properties can be detected even in the transition region enabling early

instability detection. Then we discuss how the network explores the space between the stable and
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Figure 4.12: Schematics of selection of transition threshold.

unstable regions to get softer labels. Let the stable region be denoted by ‘SR’ on one end of the

spectrum and the unstable region be ‘UR’ on the other end of the spectrum. Note, training of the

algorithm is performed with explicitly available ground truth labels. The ground truth labels are

categorized into frames of stable flame types and frames of unstable flame types. As discussed be-

fore, units of frames in the stable region are masked with ‘0’, while those in the unstable region are

retained during training. Figure 4.13 shows the algorithm’s ability to satisfy the training criteria

in one stable and one unstable validation frames.

Figure 4.13 shows how CSAE learns to be selective in masking the stable region as trained.

Feature maps from the model are shown in Figure 4.14 to highlight the detected features and the

reconstructed outputs.

For frames closer to UR in the transition stage, the corresponding feature maps showed more

pixels activated mushroom structures that characterize UR. For frames in SR however, informa-

tion is seen to be rapidly diffusing from the input into the hidden layers. At each layer, joint

parameters capture the trade-off between discarded and retained information from the stable and

unstable training sets. The fully connected layers serve at least two important purposes, namely:

(1) to reduce further the image dimensions towards only rich explanatory features, and (2) ensuring
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“Unstable”
Labeled Output

Unstable Region
Unlabeled Input

“Stable”
Labeled Output

Stable Region
Unlabeled Input

Figure 4.13: Illustration of CSAE’s ability to reproduce explicit labels.

Stable 

Region 

Unstable 

Region 

(a) (b) (c) (d) (e) 

Figure 4.14: Feature maps for (a) the third convolution layer, (b) the second pooling layer, (c) the

fourth convolution layer, (d) the unpooling layer and (e) the deconvolution layer.

structural consistency for optimal layer-wise features by reshaping the output images into dimen-

sions similar to the input. Due to the importance of the layer, an optimal number of units search

is reported in Subsection 4.4.5.1.

4.4.5.1 Optimal Code layer size

Among the many model’s parameters, the main influencing parameters that motivated a search

is the size of the encode layer of the CAE. This is also related to the number of output values of the

CRF model. Having the speed-up provided by the GPUs for training CSAE, a search for an optimal
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size of the code layer is conducted. It is done to reduce arbitrariness in the choice of the number

of coding units, and to ensure obtaining the most effective results. Therefore, 100 epochs of CSAE

algorithm is run for each of code layer sizes: 8, 10, 20 and 40 units. We started off with 8 units

because of its closeness to the presence of two classes in the training data. Then, we allowed more

degrees of freedom to see which result demonstrated mostly, the known physical properties of short

time bursts while achieving the goals for our training, i.e., selectivity. The results in Figure 4.15

and every other results from this point were also uniformly smoothed with a simple locally weighted

moving average filter MATLAB function loess having a span of 0.10 to arrive at the smoothed

lines. Transition threshold described in Subsection 4.4.4 are shown on each plot of Figure 4.15.

The transition thresholds with respect to 8, 10, 20 and 40 units at the coding layer are found to be

0.00346, 0.00391, 0.00344 and 0.00574 respectively.
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Figure 4.15: Code layer selection for 50040to30 with, (a) 8 units, (b) 10 units, (c) 30 units and (d)

40 units.

The results in Figure 4.15 support previously found results (Akintayo et al. (2016b); Sarkar

et al. (2015b,c)) of transition stage being between the two regions. It is observed that with 40

units, algorithm does not satisfy the selectivity condition of masking the stable part unlike the other

units. This may happen due to the decrease in noise rejection capability with increase in degrees

of freedom at the coding layer. Also, the discriminatory ability of the results are assessed. It is a

metric that quantifies the maximization of the inter-region separation, while minimizing the intra-

region separation similar to a Fisher linear discriminant analysis. However, for result assessment
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in this problem, a conservative way is to examine ratio of the variance to the mean provided. The

larger the spread around the average, the more the discrimination capability between stable and

unstable regions. Therefore, the distribution of z found in Equation 4.5 are also examined on this

basis for each of the test protocols.

From the trends of the statistics on Table 4.5, including early signal of the transition shown by

the frame #, coding layer with 10 units produced the best results, both visually and statistically.

It however fails to be the most discriminatory due to its large mean despite also having the largest

variance. We note that performance improves with increase in coding layer length from 8 to 10,

while it reduces when the coding layer length is increased further. While an optimal length of the

coding layer can be found between 10 and 20, we selected 10 units for performance comparison

with SCRF is presented. Transition frame # for 40 units of the layer is not easily found because

the validation results are less suppressed compared to the test frame. Hence, in this case early

detection may not be feasible.

Table 4.5: CSAE optimum encode layer size metric and transition start frame # for protocol

50040to30.

# of units µ(z) Σ(z) Σ(z)
µ(z) frame #

8 0.0222 0.0238 1.071 11800

10 0.0289 0.0302 1.045 11700

20 0.0241 0.0258 1.072 11800

40 0.0175 0.0246 1.041 ≈ 12700

4.4.5.2 CSAE and SCRF comparison

A visual comparison of the distributions of z (Equation 4.5) on test transition protocol, 50040to30

via their instability metrics are plotted against frame number for both algorithms. These are shown

in Figure 4.16. Clearly, the results of CSAE is more discriminatory in nature, i.e., it has more scatter

around its local mean than that of SCRF. CSAE also shows a greater capability than SCRF, to

satisfy the training criteria on a new test data set. Therefore, CSAE will be more effective for early
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detection of instability. Note, the transition threshold for SCRF as defined in Subsection 4.4.4 is

found to be 0.037. On the other hand, threshold for CSAE with 10 code layer units is 0.0040.
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Figure 4.16: Results of, (a) CSAE and (b) SCRF for test transition protocol, 50040to30.

Other differences in computation and memory complexity are shown in Table 4.6. Note that

Table 4.6: CSAE and SCRF comparison

Factor CSAE SCRF

platform Python Matlab

model size O(Mbytes) O(Kbytes)

CPU inference rate ≈ 4.7ms/frame ≈ 0.24secs/frame

GPU inference rate ≈ 1µs/frame –

with the demonstrated advantage of GPUs, dedicated field programmable gate arrays (FPGAs)

built for the proposed CSAE scheme can enable an on-line real-time instability detection tool for

real engines.
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4.4.6 Early detection

The speed of detection is in terms of the number of frames seen in the stable region before

bursts of instability are detected. However, due to the consistency of the CSAE algorithm with

our selective training and domain knowledge (i.e., most of the stable frames are suppressed) on

the problems analyzed, its results for 4 test transition protocols are shown and discussed in this

Subsection.
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Figure 4.17: Results of transition protocols for, (a) 50040to30, (b) 50040to28, (c) 50700to800 and

(d) 40500to600 where dashed arrows indicate the results for frames near the unstable flame in the

transition region, and thick arrows show results for frames in the supposedly stable regions.

CSAE results on different test transition conditions are presented in Figure 4.17. It shows

the capability of the model to suppress stability features of frames in the SR, while revealing some

anomalous instability features in the same frames. It also shows the anomalies to be more prominent

in the transition regions. Instability metric introduced in Section 4.4.2.2 has been used to evaluate
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the strength of each algorithm’s ability to mask examples closer to the SR compared to those

nearer to the UR. The results are comparable with those found in (Sarkar et al. (2015b)) where the

framework used a neural-symbolic approach with a combination of convolutional neural networks

and symbolic time series analysis to obtain instability metrics. Note, no background knowledge is

provided other than domain knowledge regarding the possibility of short-time instability bursts in

the stable regions. Figure 4.17(a) and 4.17(b) have similar transition conditions. Figure 4.17(b) has

a leaner mixture and it shows more short term fluctuations in the post-transition phase compared

to (a) (as marked by a dotted box in (b)). Furthermore, Figure 4.17(b) signals earlier (at frame

42) the presence of instability compared to Figure 4.17(a) whose first indication is approximately

around frame 2870. Also, by considering the underlying physics (Li et al. (2007)) about lean

mixtures, the protocol in (c) has the most unstable intermittency in both the SR and the transition

phase. It may be considered to be the closest to instability of all the protocols as highlighted in

the example frames. In contrast to (c), transition protocol in (d) generally shows results that are

closer to stability. This is probably due to the balance provided by its originally richer mixture. It

also has the most ‘late detection’ of the early burst of instability as well as departure from stability

among all the protocols.

Table 4.7: Performance metrics and transition start frame # for transition protocols.

CSAE SCRF

Protocol µ(z) Σ(z) Σ(z)
µ(z) frame # µ(z) Σ(z) Σ(z)

µ(z) frame #

50040to30 0.0289 0.0302 1.045 11700 0.1449 0.0310 0.214 –

60050to35 0.0266 0.0378 1.422 14500 0.1264 0.0380 0.301 –

50040to28 0.0175 0.0194 1.109 12300 0.1417 0.0330 0.233 –

50700to800 0.0142 0.0125 0.881 11700 0.1303 0.0150 0.116 –

40500to600 0.0045 0.0033 0.734 13300 0.1262 0.0177 0.141 –

Finally, Table 4.7 shows a summary of the results obtained from the algorithms for all the test

transition protocols.
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4.4.6.1 Frame labeling

An extension of the algorithm’s objectives could be made to implicit labeling. This is achieved

by searching through all the frames to detect frames that are adjacent neighbors to a given frame.

In clear terms, this means finding the label of a frame given the knowledge of the label of an adjacent

flame. This kind of search is usually difficult with most primitive low dimensional local labeling

algorithms (e.g. HMM and MEMM) due to dependency depth and ‘labeling bias’ limitations

respectively. For this purpose also, we were motivated to compare the results of CSAE to those of

SCRF.
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Figure 4.18: Adjacency labeling result of transition protocols for 60050to35 at the different regions

of the profile while the image frames without any boundaries represent the inputs to the protocols

at the points indicated by the arrows.

It was shown that such high dimensional problem can be simplified with values that are cali-

brated using scales such as our instability metric. The highlighted examples in Figure 4.18 show

how labeling may be achieved with the algorithms. Based on qualitative frame-to-frame visualiza-
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tion, labels provided by CSAE are shown in Figure 4.18 to outperform that of SCRF. CSAE is able

to differentiate labels from frame-to-frame better than the CSAE in the separate flame regions.

Frames in the region closest to UR have their the mushroom structures better labeled by CSAE

while SCRF does not activate all the units for such labels. Importantly also, we find a gradual

transition in the labels of frames in the almost linear transitioning stage of CSAE in much similar

way as that of SCRF. It was noted that all input examples used for comparison in the Figure 4.18

were chosen at the similar frame numbers for both algorithms. The results provides briefly the

potentials of the algorithm to deriving soft labels from intrinsically labeled classes, two classes in

this case.

In summary, the end-to-end convolutional selective autoencoder was deployed for early detection

of combustion instabilities in hi-speed flame video. Validation results were performed on data from

a laboratory scale swirl-stabilized combustor. In addition to that, the framework was also used to

generate fuzzy labels from prior knowledge of hard labeled examples as solution to implicit labeling

problem. Conditional random field model results were used to compare the effectiveness of our deep

learning based solution approach in both applications. Moreover, CSAE results shown confirm the

expert’s physical observation when intermmitent coherent structures are present in stable flame

regions. Some observed differences in the results are that: (i) CSAE is able to learn and generalize

selectivity better than SCRF via more efficient masking the stable region; (ii) Unlike CSAE, SCRF

introduces a bias in the instability metric computation for test data, such that its ability to act as an

effective filter is hindered; (iii) SCRF succumbs to high false alarm rate during stable combustion.

The fact that CSAE can detect instability early for various new (unseen in training phase) protocols

while being trained on different protocols shows the generalizability of the proposed algorithm.

The results were presented in the light of KL-distance based instability metric that calibrated

the closeness to domain knowledge of stable flame frames reproduced by the models. Using the

same metric, the architecture was extended for addressing the neighborhood implicit graph labeling

problem. The framework can be generalized to soft-labeling of high-dimensional data.
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4.5 Conclusion

Feature extraction from other spatial datasets have been approached by improving the denoising

autoencoders in Section 3 with state-of-the-art detection convolutional autoencoder. For more

tasks generalization of the approach, a selectivity function was designed and incorporated in the

convolutional autoencoder. The architecture was thereafter shown on two important applications

as a effective candidate for hierarchical feature extraction from this class of datasets.
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CHAPTER 5. FEATURE EXTRACTION FROM TEMPORAL DATA –

HIERARCHICAL FEATURE EXTRACTION

In this chapter, a proposed hierarchical feature extraction algorithm for unsupervised streaming

non-stationary time series (temporal) dataset is presented. The ideas behind the algorithm are

methodically and mathematically formulated, and the algorithm is validated on simulated and

tested on real life observation.

5.1 Introduction

Feature extraction facilitates effective storage, analysis and transmission of data via high level

representations of the raw data (Ralanamahatana et al. (2005)). From the time-series perspective,

efficient feature extraction is an important and challenging task in many statistical signal processing

and machine learning applications. From a machine learning perspective, time series feature ex-

traction has been considered primarily by two separate communities, involving the parametric and

the non-parametric modeling approaches. Examples of parametric models include auto-regressive

and/or moving average type models where the number of model parameters remain fixed. The

nonparametric techniques on the other hand have the capability to dynamically evolve in the para-

metric space as novel data features arrive. Some of the popular techniques include variations of the

Bayesian Non-Parametric (BNP) strategies such as the Hierarchical Dirichlet Process (HDP) with

Hidden Markov Models (Fox et al. (2011)), infinite Hidden Markov Models (Beal et al. (2014)) and

variational inference on Bayesian Gaussian mixture models (Blei and Jordan (2006)). However,

due to the involvement of latent space evaluation, these techniques tend to be rather slow and thus

difficult to be used in on-board, real time applications.
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5.2 Background and Motivation

In residential energy disaggregation tasks, it is important determine the energy consumption by

various end uses (e.g., appliances or lighting) given the time series of whole building energy usage

(Hart (1992); Zeifman and Roth (2011)). Some of the benefits of this analysis are: load balanc-

ing, peak demand shaping and the time-of-use pricing. Typically, supervised (Cook et al. (2011);

Kolter and Jaakola (2012)) or semi-supervised (Shao et al. (2012)) algorithms are applied to solve

such a problem. However, an unsupervised approach for automatically identifying different unique

characteristics in whole building electrical energy usage can be particularly useful for this emerg-

ing Internet of Things (IoT) application, in terms of easy deployment and enhanced scalability.

With this motivation, a Hierarchical Symbolic Dynamic Filtering (HSDF) framework (Akintayo

and Sarkar (2015)) is proposed to automatically captures different unique quasi-stationary charac-

teristics in the form of different Probabilistic Finite State Automata (PFSA) models. The entire

time series can then be expressed as a higher level PFSA whose states are the PFSAs that model

the different unique characteristics. Modeling a quasi-stationary time series as a PFSA is based on

the concept of Symbolic Dynamic Filtering (SDF) that approximates a symbolic time series as an

observable Markov chain of a certain order (Ray (2004)). However, the quasi-stationary assumption

is prohibitive when dealing with the non-stationary characteristics of data. Time series contains

multiple quasi-stationary characteristics at a fast time-scale and hence becomes non-stationary

when viewed at a slower time-scale. A thorough review of the SDF framework can be found by

Ray (2004); Gupta et al. (2008).

Time series signals obtained from dynamical systems can be decomposed into multiple time-

scales. Without loss of generality, we consider two such time-scales, namely the fast time-scale at

which the acquired signal can be considered to be quasi-stationary and a slow time-scale, at which

the time series can be non-stationary in nature. A detailed review of the concept of hierarchical

symbolic dynamic filtering (HSDF) using an illustrative example was described in Figure 5.1. A

first slow time epoch τ1 is represented by the PFSA 1 model. Given learning the PFSA 1 from

slow time epoch τ1 (using standard SDF), a second slow time epoch τ2 is learnt. τ2 in Figure 5.1
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τ3
τ1 τ2

Higher level features (Slower time-scale)

τ4

Lowest level
Features (Faster time-

scale)

Class 2 feature Class 1 feature 

PFSA 2:
modeling class 2 

PFSA 1:
modeling class 1 

tClass 1 feature Class 1 feature 

Figure 5.1: Hierarchical PFSA-based feature extraction at a glance

would be considered to be same quasi-stationary characteristics as in τ1. The challenge was to

identify the similarity and classify τ2 as a member of class 1 represented by PFSA 1. The class

retention mechanism can be perceived as a self-transition at a higher logical level where PFSA

1 is considered as a state of the underlying system. Slow time epoch τ3 however belongs to a

new, unforeseen quasi-stationary characteristics. Identifying the change in characteristics from the

streaming data and creating new PFSA to represent individual characteristics. At the higher logical

layer, this becomes a state transition from state/class 1 (represented by PFSA 1) to state/class 2

(represented by PFSA 2). By starting to learn an upper-level PFSA that model class retentions

and transitions. Time series from the underlying system can thus be described in a bottom-up

hierarchical manner whereby the goal is to discover multiple PFSAs at the lowest level which in

turn become the states of an upper-level PFSA. The concept is related to deep learning architecture

where ’features of features’ are learned at the each next layer in the hierarchy.

The proposed HSDF scheme ensures transitioning by automatically detecting and modeling

unique fast time-scale characteristics via newer PFSA creation. A Multi-scale Symbolic Time Se-
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ries Analysis (MSTSA) (Sarkar et al. (2015a)) approach was proposed recently for characterizing

seismic activities monitored by Unattended Ground Sensor (UGS) in an online manner. The key

difference between the MSTSA approach and the hierarchical feature extraction proposed is that no

label or supervision (i.e., without knowing how many unique characteristics or classes are present

in data and when or how often they occur) is considered. The proposed modeling architecture

is also notionally similar to that of the Switching Linear Dynamical Systems (SLDS) (Fox et al.

(2009)) While SLDS is linear, nonlinear modeling for capturing the different unique characteristics

was considered. Thereafter, the algorithm is validated on time series data from a nonlinear dynam-

ical systems modeled by the chaotic Duffing and Van der Pol systems (Rao et al. (2009a)). The

algorithm was tested on the publicly available Reference Energy Disaggregation Dataset (REDD)

for residential electrical energy disaggregation.

The main contributions of this research are: The development of a novel Hierarchical Symbolic

Dynamic Filtering (HSDF) algorithm that can model the non-stationary time series data com-

prised of several quasi-stationary behavior where neither the behaviors nor the number of unique

characteristics are known; The demonstration of the effects of various concepts such as adaptive

Chinese Restaurant Process (CRP), likelihood change rate and stickiness adjustment on the HSDF

performance; The development of an off-line PFSA model revision strategy to improve HSDF per-

formance; Testing and validation of the proposed algorithm, as well as performance comparison

with SLDS (realized via the sticky HDP-HMM approach) in order to show that the proposed algo-

rithm is a faster and computationally more efficient method with vast applicability in real-life time

series feature extraction.

A description of SDF via the proposal’s other main constituents (namely, CRP and stickiness

factor) are presented in Subsection 2.7.2.
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5.2.1 The CRP distribution and stickiness adjustment

This subsection briefly describes a couple of basic statistical concepts used in the proposed

formulation, namely the Chinese Restaurant Process (CRP) and data likelihood adjustment using

the stickiness factor. Recently, these ideas have been extensively used in nonparametric modeling

techniques and therefore details can be found in the related literature (Teh (2007); Fox et al.

(2011)).

1

6

Chinese restaurant

Table onew

Table o3

Table o1

Table o2

Figure 5.2: Illustration of Chinese Restaurant Process with numbers: 1,2,3, · · · indicating cus-

tomers’ order of arrival.

CRP represents a discrete sequence over partitions that is suitable for modeling infinite mixtures,

hence often used for modeling clusters in Bayesian frameworks. CRP shares some similarities with

the stick breaking and the Dirichlet Process, but with some subtle differences in how the processes

evolve (Teh (2007)). The crux of the CRP distribution is to model the tendencies of newly arriving

customers to a fictional Chinese restaurant to either sit in an existing table ∈ O or in a new

table, onew (Aldous (1985)) with less restriction on number of tables or customers at a table (as



125

illustrated in Figure 5.2). Therefore, CRP is a suitable candidate for nonparametric modeling. The

CRP distribution can be mathematically described as follows:

Prε(o ∈ O) =
C(o)

[
∑

x∈O C(x)] + ε
(5.1)

Prε(onew) =
ε

[
∑

x∈O C(x)] + ε
(5.2)

where C(·) signifies a concentration function and ε is called the CRP parameter. Originally, a

CRP process is used to determine whether a new PFSA model is required to model a newly arriving

slow time epoch or an existing PFSA would suffice.

While induction of CRP can help in deciding the need for a new PFSA model, noise and

spurious disturbance present in real data can drive the decision system to instability. That is,

many unnecessary new PFSA models may get generated and the decision may then fluctuate

among different PFSA models that are close to each other, with closeness based on an appropriate

metric. Similar situation arises in other unsupervised techniques as well such as the HDP-HMM.

Assuming inference could be made after the arrival of several slow time epochs, an off-line revision

that is described in Subsection 5.3.4 will be effective at merging such spurious classes. However, in

most real-life application, decisions have to be taken in an online manner, i.e., soon after the arrival

of the new slow time epochs. A stickiness factor described by Fox et al. (2011); Akintayo and Sarkar

(2015) was found to be effective for reducing such fluctuations. The extra information incorporated

by stickiness is to lean slightly towards the class occupied by the most recently assigned (before the

current epoch) slow time epoch. The ideas discussed in this section are described mathematically

in Section 5.3.

5.3 Proposed Hierarchical SDF Methodology

The proposed hierarchical symbolic dynamic filtering (HSDF) framework, along with the learn-

ing scheme using streaming non-stationary time series data are described in this section. In general,
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two technical challenges are involved in such a problem involving streaming data. The first is re-

liability (or accuracy) of the inference for decision-making, while the second is how quickly the

inference can be made. The aim of the research was to present a comprehensive approach to tack-

ling both challenges for robust decision-making. Most real-life dynamical systems, especially those

with safety, security, reliability or dependability concerns (Sarkar et al. (2016, 2008); Gupta et al.

(2008); Jin et al. (2011); Sarkar et al. (2013a); Chakraborty et al. (2008b)) require such online

inference capability for decision-making. We begin with a mathematical derivation of the data like-

lihood of a newly arriving slow time epoch given for a few existing classes (PFSA models) described

in Subsection 2.7.2. Formulation of an adaptive CRP process and stickiness factor for assigning

slow time epochs to existing and new classes are provided in Subsection 5.3.2. Finally, the outline

of an off-line algorithm for periodic revision (over a few slow time epochs) of the space of PFSA

models learnt by the online process is presented in Subsection 5.3.4.

5.3.1 Data Likelihood estimation

Let us assume that K classes representing K unique quasi-stationary behavior occurred in

the past data epochs have already been identified. Let the distinct set of classes be {Ci : i =

1, 2, · · · ,K}, over the same sets of symbol Ξ and state Θ, and each class Ci is modeled by a PFSA

P i = (Θi,Ξ, δi,Ωi). Also, let symbol strings belonging to the class be Si , si1s
i
2 . . .. An appropriate

depth D is selected for the D-Markov machine from which the morph (probability) matrix Ωi has

been derived. Each row of the Ω is normalized in order to perform inference on a new slow time

epoch.

Let the mth row of Ωi be denoted as Ωi
m and the nth element of the mth row as Ωi

mn ≥ 0 and∑|Ξ|
n=1 Ωi

mn = 1. The a priori probability density function fΩi
m|Si of the random row-vector Ωi

m

that is conditioned on a symbol string Si can be modeled by the Dirichlet distribution (Ferguson

(1973); Sethuraman (1994)) as,

fΩi
m|Si(ωim|Si) =

1

B(αim)

|Ξ|∏
n=1

(ωimn)α
j
mn−1 (5.3)
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where, each column of the Ωi is represented by ωim as,

ωim =

[
ωim1 ωim2 . . . ωim|Ξ|

]
and the constant for normalization is

B(αim) ,

∏|Ξ|
n=1 Γ(αimn)

Γ(
∑|Ξ|

n=1 α
i
mn)

(5.4)

where, Γ(•) denotes the gamma function, and αim =

[
αim1 αim2 . . . αim|Ξ|

]
with

αimn = N i
mn + 1 (5.5)

At a state θm, the number of times the symbol ξn arises in the transition to a new state is

modeled by N i
mn as,

N i
mn ,

∣∣{(sik, vik) : sik = ξn, v
i
k = θm}

∣∣ (5.6)

where sik is the kth symbol in Si and vik is the kth state as obtained from the symbol sequence

Si. Note that a state is defined as a sequence of past D symbols. N i
m ,

∑|Ξ|
n=1N

i
mn computes the

number that state θm occur in the state sequence. From Equation 5.4 and 5.5, it follows that

B(αim) =

∏|Ξ|
n=1 Γ(N i

mn + 1)

Γ(
∑|Ξ|

n=1N
i
mn + |Ξ|)

=

∏|Ξ|
n=1(N i

mn)!

(N i
m + |Ξ| − 1)!

(5.7)

where the standard definition, Γ(n) = (n− 1)! ∀n ∈ N has been used.

Markov property of the PFSA P i, ensures that the (1×|Ξ|)-dimension row vectors of Ωi are statis-

tically independent of each other, ∀m = 1, . . . |Θ|. Equations 5.4 and 5.7 thus lead to conditioning

of the a priori joint density, fΩi|Si of the probability morph matrix, Ωi on the symbol string, Si as,

fΩi|Si(ωi|Si) =

|Θ|∏
m=1

fΩi
m|Si

(
ωim|Si

)
=

|Θ|∏
m=1

(
N i
m + |Ξ| − 1

)
!

|Ξ|∏
n=1

(ωim)N
i
mn

(N i
mn)!

(5.8)

where, ωi =
[
(ωi1)T (ωi2)T · · · (ωi|Θ|)

T
]
∈ [0, 1]|Θ|×|Ξ|, and T is a transpose operator.
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At this point, if a new slow time test epoch is represented by S̃, its probability of belonging to

a certain PFSA model (Θ,Ξ, δ,Ωi), given the morph matrix Ωi derived from the training symbol

sequence Si can be represented as a product of multinomial distributions (Wilks (1963)) as,

Pr
(
S̃|Θ, δ,Ωi

)
=

|Θ|∏
m=1

(Ñm)!

|Ξ|∏
n=1

(
Ωi
mn

)Ñmn

(Ñmn)!
(5.9)

, Pr
(
S̃|Ωi

)
as Θ and δ are kept invariant (5.10)

where, given a state θm, the number of times the symbol ξn present in the testing string S̃

occurs during transition to a new state is modeled by Ñmn as,

Ñmn ,
∣∣{(s̃k, ṽk) : s̃k = ξn, ṽk = θm}

∣∣ (5.11)

where again, the kth symbol in the observed string S̃ is s̃k, and the kth state derived from S̃ is

denoted by ṽk.

Now, Equation 5.8 and 5.9 can be combined to obtain the probability of a symbol string

S̃ belonging to a class characterized by already observed symbol string Sj . With the derivation

presented by Sarkar et al. (2000), the following conditional distribution was obtained,

µ(S̃|Si) =

|Θ|∏
m=1

(Ñm)!
(
N i
m + |Ξ| − 1

)
!(

Ñm +N i
m + |Ξ| − 1

)
!

×
|Ξ|∏
n=1

(Ñmn +N i
mn)!

(Ñmn)!(N i
mn)!

(5.12)

where Ñm ,
∑|Ξ|

n=1 Ñmn.

In practice, Stirling’s approximation for the logarithm of a factorial log(n!) ≈ n log(n) −

n Pathria (1996) is mostly easier to compute, especially when either (or both) of N i and Ñ consist

of statistically large enough sample points (but still not be enough to directly estimate a Π matrix

at the testing phase). At this point, the likelihood probability, Pr(S̃|Si) may be easily found by

normalizing the conditional factors in Equation 5.12.
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5.3.2 Assignment of a slow time-scale behavior to an existing or new class

The objective of the inference process is to compute the probability of assigning a slow time

epoch τj to a class Ci ∈ C (where C = {Ci ∀ i = 1, · · · ,K} is the set of existing classes) or a

newly created class CK+1. Let the symbol sequence for the current slow time epoch be S̃τj . Then

the likelihood for class Ci for current epoch τj is given by µ(S̃τj |Si) as described in the previous

subsection.The posterior probability for class selection can be denoted by Pr(Ci, Si|S̃τj ) which is

equivalent to Pr(Ci|S̃τj ) in this case since all existing classes are completely characterized by symbol

sequences Si ∀i.

With this setup, we obtain the following:

Pr(Ci|S̃τj ) ∝ µ(S̃τj |Si) ∀i = 1, · · · ,K (5.13)

We use the Chinese Restaurant Process (CRP) to introduce the likelihood of a new class CK+1

with a CRP hyperparameter γj as follows (note that the hyperparameter is specific to the test

epoch τj).

µγj (C
K+1|S̃τj ) = γj

K∑
i=1

µ(S̃τj |Si)⇒
K∑
i=1

µγj (C
i|S̃τj ) = (1− γj)

K∑
i=1

µ(S̃τj |Si) (5.14)

CRP hyperparameter γj (that was described in Equation 5.2) is given by the following expres-

sion.

γj =
ε[∑K

i=1 µ(S̃τj |Si)
]

+ bε
(5.15)

where, ε ≥ 0 is a real valued parameter and µ(S̃τj |Si) is treated as the concentration or strength

function found in Equation 5.1 and 5.2 for the CRP formulation. However, instead of the classical

formulation Akintayo and Sarkar (2015), we introduce a new scalar multiplier b that modifies the

likelihood of creating a new class. The choice of b will depend on a parameter A(∆, i) that captures

the rate of change of data likelihood as follows:

A(∆, i) =
1

∆

∆∑
p=1

[
µ(S̃τj−p |Si)− µ(S̃τj |Si)

]
(5.16)
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where ∆ is a memory parameter that accommodates likelihoods of past epochs. It is evident from

the expression of A(∆, i) that it is essentially an expected reduction of likelihood of exisiting classes

at the current epoch τj . A high value of ∆ reduces the noise in estimation, which can also reduce

the senstivity to class changes. While A(∆, i) can be incorporated in various ways to compute the

CRP parameter, it is accommodated in a discrete manner in the present formulation. Note that

the condition with high values of A(∆, i) ∀i suggests a significant drop in likelihood of all existing

classes which increases the possibility of a new class generation. Therefore, a positive threshold, ν

is chosen such that when A(∆, i) > ν ∀i, we use b = 1 (i.e., classical formulation). Otherwise, we

reduce the possibility of new class generation by taking b = 2 for the adaptive CRP formulation.

At this point, we introduce the notion of ‘stickiness’ in our proposed algorithm which is based on

the fact that a real-life system usually may not fluctuate its operating point or internal parametric

condition at each slow time epoch. In the present context, this means that if a slow time epoch

τj−1 belongs to a class, Ck ∈ C, then there will be a high likelihood for new streaming data at

epoch τj to belong to Ck as well. This notion is incorporated into the formulation by introducing

a positive bias towards the last seen class Ck as follows:

µγj (C
k|S̃τj ) = max

{
κ

1− κ

K+1∑
i=1

µγj (C
i|S̃τj ), µγj (Ck|S̃τj )

}
(5.17)

where 0 < κ < 1 is the stickiness factor. Note, the rationale behind this adjustment is to ensure a

certain minimum likelihood for the last seen class Ck and in this context, the proposed formulation

ensures that

µγj (C
k|S̃τj )∑K+1

i=1 µγj (C
i|S̃τj )

≥ κ (5.18)

This can be proved by considering the extreme case when µγ(Ck|S̃τj ) = 0, before applying the

stickiness factor. Numerically, the ‘stickiness’ adjustment significantly reduces the ‘hunting behav-

ior’ in class identification and creation process which will be demonstrated via numerical simulation

results in the next section.
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Finally, the µγj (C
i|S̃τj ) factors are normalized to obtain the posterior probabilities Pr(Ci|S̃τj )

for each class as follows:

Pr(Ci|S̃τj ) =
µγj (C

i|S̃τj )∑
µγj (C

i|S̃τj )
(5.19)

We generate a random sample from this distribution to take a decision of class identification and

generation at the testing epoch τj .

The online algorithm for class assignment is summarized in Algorithm 1. Note, we assume that

partitioning and state construction are already performed before we begin the following algorithm.
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Hence, the alphabet Ξ and state set Θ and the corresponding indices n and m are already defined.

Input Parameters: CRP parameter ε, memory parameter ∆,

likelihood rate threshold ν and stickiness parameter κ

Data Input: Slow time epochs: τ1, τ2, · · · of symbolized string segments S̃τl

Initialization: C = {C1} and Compute N1
mn using S̃τ1

forall τ2, τ3, · · · do

Compute Ñmn using S̃τj

if j < ∆ + 1 then

Compute γj using Equation 5.15 with b = 2

else

Compute A(∆, i) for all existing classes Ci using Equation 5.16

if A(∆, i) > ν ∀i then

Compute γj using Equation 5.15 with b = 1

else

Compute γj using Equation 5.15 with b = 2

end

end

Compute µγj (C
i|S̃τj ) using Equation 5.14

∀Ci ∈ C = {C1, C2, . . . , CK} and CK+1

Apply ‘stickiness’ adjustment using Equation 5.17

Compute Pr(Ci|S̃τj ) ∀i ∈ {1, 2, . . . , CK+1} using Equation 5.19

Assign S̃τj to a class via sampling from the distribution Pr(Ci|S̃τj )

if j ∈ {1, 2, . . . ,K} then

Update N j
mn by appending S̃τl to Sj

else if j = K + 1 then

Update C as {C1, C2, . . . , CK , CK+1}

Compute NK+1
mn using S̃τl

end

end

Algorithm 1: Online HSDF algorithm



133

5.3.3 Computational complexity of HSDF

The computation involved in getting the symbols from the continuous time series given the

discretization parameters is O(T ), where T is the number of data points in the time series. The

core PFSA formulation in the feature extraction model is an observable Markov model where the

state transition matrix can be updated simply with a frequency-based scheme. Therefore, with a

fixed algebraic structure of the PFSA (i.e., with fixed number of states and fixed alphabet), the

PFSA estimation also needs O(T ) computation.

The worst case computation is however incurred during the likelihood computation for different

PFSA models (corresponding to different existing classes) for a given test epoch. In a strict imple-

mentation, this step involves a few factorial computations which becomes extremely computation

intensive as T grows. However, we use the Stirling’s approximation such that the computation

does not grow with the number of datapoints. If the number of existing classes is fixed, then the

complexity of this step grows linearly with the number of epochs which is basically proportional to

T if the epoch length is kept constant. As the same computation has to be repeated for all existing

classes we obtain that with a fixed epoch length and a maximum possible number of classes K, the

computational complexity becomes O(KT ). Therefore, the overall complexity of the online HSDF

algorithm also becomes O(KT ).

5.3.4 Off-line PFSA revision

Algorithm 1 operates at the lowest logical layer in an online manner for learning multiple

PFSA models representing different unique quasi-stationary characteristics. Representation of these

characteristics is performed by considering the changes in the data likelihood and its rate of change.

However, when the data quality is low especially in terms of signal-to-noise ratio (SNR), the online

learning algorithm may generate many spurious classes. In such cases, redundant PFSA models

may be pruned periodically, that is, after a few slow time epochs have been observed. The pruning

step proposed here merges different PFSA models whose proximity are evaluated with the metric

laid out in the Definition 5.3.1 below (according to Mukherjee and Ray (2014)).
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Definition 5.3.1. (Distance Metric for PFSA) Let P1 = (Θ1,Ξ, δ1,Ω1) and P2 = (Θ2,Ξ, δ2,Ω2)

be two PFSA with a common alphabet Ξ. Let Pr1(Ξr) and Pr2(Ξr) be the steady state probability

vectors of generating words of length r from the PFSA, P1 and P2, respectively, i.e., Pr1(Ξr) ,

[Pr(w)]w∈Ξr for P1 and Pr2(Ξr) , [Pr(w)]w∈Ξr for P2. Then, the metric for the distance between

the PFSA models, P1 and P2 is defined as

Φ(P1,P2) , lim
n→inf

n∑
r=1

‖Pr1(Ξr)− Pr2(Ξr)‖l1
2r+1

(5.20)

where the norm ‖ ? ‖l1 indicates the sum of absolute values of the elements in the vector ?.

Thus, the pruning step can merge two different PFSA models identified by online HSDF, P1

and P2 when Φ(P1,P2) < η, where η > 0. The metrics utilized have been evaluated on symbols

whose word length are 1. Note that this revision step can be considered to be part of an off-line

process for learning the higher-level (Tier 2) PFSA.

5.4 Improvement of Data Likelihood

The algorithm proposed in this section inherently aims to maximize the data likelihood as

the CRP formulation uses the likelihood of all the existing classes as concentration or strength

function at any given epoch. When the likelihood values of the existing classes drop significantly,

a new class is created to keep the data likelihood high with respect to the overall hierarchical

model. Likelihood visualization in Section 5.5 supports this notion as well. We observe that this

process is equivalent to minimizing the Kullback-Liebler (KL) Divergence (Kullback and Liebler

(1951)). Similar observations were made by Roux and Bengio (2008); Bengio (2009). Therefore, KL

Divergence→ 0 can be a relevant objective to learn the proposed hierarchical model and hence can

be used for assuring that the algorithm can converge. Also, note that the stickiness adjustment and

the PFSA revision step aims to reduce the number of PFSA at the lower layer without significant

loss in data likelihood. Hence, the overall algorithm aims to minimize model complexity while

capturing data characteristics (likelihood).
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Before demonstrating the equivalence between data likelihood and KL Divergence stated above,

we present some mathematical preliminaries.

5.4.1 Preliminaries

The gamma function Γ(α) can be expressed as,

Γ(α) , e−ααα−
1
2

√
2π(1 +

1

12α
+O(

1

α2
)) (5.21)

Using Stirling’s approximation, the expression can be simplified under the assumption of α� 1
2 as

the following:

Γ(α) ≈ e−ααα (5.22)

Using this formula, we can rewrite the normalizing constant described in our online classification

approach (see Equation 5.4) as

B(αim) ≈
∏|Ξ|
n=1 e

−αi
mn(αimn)α

i
mn

e−(
∑|Ξ|

n=1 α
i
mn)(

∑|Ξ|
n=1 α

i
mn)(

∑|Ξ|
n=1 α

i
mn)

(5.23)

By eliminating common terms from the numerator and the denominator, we obtain

B(αim) ≈
∏|Ξ|
n=1(αimn)α

i
mn

(
∑|Ξ|

n=1 α
i
mn)(

∑|Ξ|
n=1 α

i
mn)

(5.24)

Let the constant denominator term (
∑|Ξ|

n=1 α
i
mn)(

∑|Ξ|
n=1 α

i
mn) be denoted as Z = (N i

m + |Ξ|)N i
m+|Ξ|.

With this setup Equation 5.8 in Section 5.3.1 can be rewritten as

fΩi|Si(ωi|Si) ≈
|Θ|∏
m=1

Z

|Ξ|∏
n=1

(ωim)N
i
mn

(N i
mn + 1)N i

mn+1
(5.25)

Similarly, at the testing stage, Equation 5.10 can be rewritten as

Pr
(
S̃|Ωi

)
≈
|Θ|∏
m=1

Z̃

|Ξ|∏
n=1

(Ωi
mn)Ñmn

(Ñmn + 1)Ñmn+1
(5.26)

where Z̃ = (Ñm)Ñm .

Theorem 5.4.1. At a testing epoch, maximizing the loglikelihood log Pr
(
S̃|Ωi

)
is equivalent to

minimizing KL Divergence between the testing data distribution and training data distribution.
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Proof sketch:

log Pr
(
S̃|Ωi

)
=

|Θ|∑
m=1

log Z̃ −
|Ξ|∑
n=1

([
Ñmn + 1

]
log
[
Ñmn + 1

]
− Ñmn log Ωi

mn

) (5.27)

After some algebraic rearrangement we obtain,

log Pr
(
S̃|Ωi

)
=

|Θ|∑
m=1

− |Ξ|∑
n=1

([
Ñmn + 1

]
log

[
Ñmn + 1

Ωi
mn

])+

|Θ|∑
m=1

log(Z̃)−
|Ξ|∑
n=1

log Ωi
mn


(5.28)

Note that
∑|Θ|

m=1 log(Z̃) is a constant normalization factor term and Ωi
mn represents the models

learnt at the training stage for the existing classes (hence, does not change significantly). Therefore,

if we aim to maximize the log-likelihood log Pr
(
S̃|Ωi

)
over all models (or classes) denoted by the

index i, we obtain

arg max
i

log Pr
(
S̃|Ωi

)
≈ arg max

i

|Θ|∑
m=1

− |Ξ|∑
n=1

([
Ñmn + 1

]
log

[
Ñmn + 1

Ωi
mn

])
= arg max

i

|Θ|∑
m=1

− |Ξ|∑
n=1

(
[α̃mn] log

[
α̃mn
Ωi
mn

]) = arg min
i

(
KL Divergence

(
α̃,Ωi

))
(5.29)

where α̃ represents the distribution of the testing data and Ωi represents the training data distri-

bution (for model i).

5.5 Validation Results and Discussion

The proposed algorithm is tested and validated in this section using data from simulated switch-

ing nonlinear dynamical systems. We begin with describing the simulation system and data gener-

ation scheme for validation.
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5.5.1 Simulated nonlinear dynamical systems

The chaotic Duffing system whose mathematical model is described in Equation 5.30, which is

a popular choice as a nonlinear system (Rao et al. (2009a)) was simulated.

d2x(t)

dt2
+ β

dx(t)

dt
+ α1x(t) + λx3(t) = Acos(wt) (5.30)

where A = 22.0 is the input amplitude, w = 5.0 rad/s is its frequency of excitation, excitation

harmonics, α1 = 1.0, stiffness, λ = 1.0. It is know that varying β, the dissipation parameter causes

change in the system behavior and a sudden shift or bifurcation occurs around β = 0.3 (Rao et al.

(2009b)). Hence, β = 0.1 signifies an operating region before bifurcation and β = 0.4 represents a

system behavior after bifurcation. Therefore, a non-stationary time series with two types of quasi-

stationary segments can be generated by randomly selecting between the two β values for different

segments. Plots of the output x vs. the forcing function are shown in Figure 5.3 under different

noise contamination levels.
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Figure 5.3: Input-output plots of non-stationary dynamics for chaotic Duffing System under various

signal to noise ratio (SNR) - Plate (a) SNR = ∞, Plate (b) SNR = 9 and Plate (c) SNR = 1.

Also three types of quasi-stationary segments or features are generated by adding a Van der

Pol oscillation system behavior which is given by Tsatsos (2006) to the 2-class problem simulated

by the Duffing system.

d2x(t)

dt2
+ 1000x2(t)

dx(t)

dt
+ x(t) = 1000 (5.31)
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Figure 5.4 shows the plots of the output x vs. the forcing function with all the three features

(two from the Duffing system and one from the Van der Pol system) under two different noise

contamination levels. For both 2-features and 3-features cases, time series data with randomly

generated 400 epochs (with 1000 data points of one particular feature in each epoch) are used

for testing. Also for symbolic dynamic analysis, the raw time series is symbolized with a uniform

partitioning (i.e., equal width binning) into 7 bins that is found to be sufficient experimentally for

most cases.
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Figure 5.4: Input-output plots of non-stationary dynamics for a random mix of chaotic Duffing

system and Van der Pol system under various signal to noise ratio (SNR) - Plate (a) SNR = ∞,

Plate (b) SNR = 1.

5.5.2 Results and performance comparison

The performance of the proposed algorithm is evaluated on both the two and three features test

cases beginning with analysis to explore the effects of adaptive CRP formulation with parameter

b, stickiness adjustment and off-line revision steps.

Performance with classical CRP formulation: Many traditional methods only consider

data likelihood for feature change detection or outlier detection purposes. However, the algorithm

here utilized the change in data likelihood to decide on generating new models. It incorporates the

effect of change in likelihood via using the adaptive CRP formulation with parameter b. While

in our algorithm, b can take a value of 1 or 2 depending on the parameter A(∆, i) (∆ is chosen
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to be 4), the classical CRP formulation would use a constant b = 1. Figure 5.5 presents the

results using the classical formulation, where plate (a) shows the performance only after applying

the CRP step, plate (b) shows the effect of stickiness adjustment and plate (c) provides the final

result after the off-line revision step (using η = 1
2K given K classes from the online part, i.e., after

stickiness adjustment). While the CRP step enables the framework to detect changes in time series

characteristics, evidently, the stickiness adjustment is critical to control the ‘hunting’ behavior that

creates ‘too many’ new classes. Finally, the off-line PFSA revision step helps to improve the result

even further. It should be noted that this result is obtained using a noiseless (i.e., signal to noise

ratio, SNR = ∞) data set with two features. Figure 5.6 presents the effect of noise content (for

SNR = ∞, SNR = 9 and SNR = 1) on the performance using the same algorithm (i.e., constant

b = 1). The results demonstrate visually that the algorithm is quite robust to significant noise

contamination.
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Figure 5.5: Results for noiseless Duffing system where, Plate (a) HSDF using classical CRP-only,

Plate (b) HSDF using classical CRP and stickiness, and Plate (c) offline PFSA revision.

Performance with adaptive CRP formulation: Now we move to the adaptive CRP for-

mulation as described in Algorithm 1, with an appropriate choice of b (i.e., equal to 1 or 2) based

on the change in data likelihood of the existing classes. Results are presented in Figure 5.7 that

show the adaptive formulation (with stickiness adjustment) to be quite efficient and achieves online

performance better than that obtained after off-line revision with the classical formulation. Similar

to the previous case, the algorithm is also quite stable under noise contamination. Additionally, we

found that the sensitivity of the algorithm to the hyper-parameters, ε and κ reduces significantly
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Figure 5.6: Results for noiseless Duffing system using on-line HSDF (i.e., without off-line PFSA

revision) with classical CRP formulation under different noise contamination levels - Plate (a) SNR

= ∞, Plate (b) SNR = 9 and Plate (c) SNR = 1.

under the adaptive CRP formulation. Typically, the values for ε and κ used in the research are

≈ 0.02 and ≈ 0.6 respectively. Figure 5.8 shows the data log-likelihood plots for the class transitions

and new class creation in an explicit manner. Table 5.1 compiles all the quantitative results for

both classical and adaptive CRP formulation under the different noise conditions considered here.

The results show that online HSDF with adaptive CRP performs the best under low to moderate

noise level. At a higher noise level, the off-line revision may be more suitable.
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Figure 5.7: Results for Duffing system using online HSDF (i.e., without off-line PFSA revision)

with adaptive CRP formulation under different noise contamination levels - Plate (a) SNR = ∞,

Plate (b) SNR = 9 and Plate (c) SNR = 1.

Performance comparison: We compared the results from our proposed algorithm with those

from Hierarchical Dirichlet Process – Hidden Markov Model (HDP-HMM) (Fox et al. (2011)) that

is a sampling based technique based on the Bayesian nonparametric concept, such that the joint



141

Epoch Numbers
0 100 200 300 400

L
o
g
-l
ik

e
lih

o
o
d

-70

-60

-50

-40

-30

-20

-10

(a)

Epoch Numbers
0 100 200 300 400

L
o
g
-l
ik

e
lih

o
o
d

-70

-60

-50

-40

-30

-20

-10

(b)

Epoch Numbers
0 100 200 300 400

L
o
g
-l
ik

e
lih

o
o
d

-70

-60

-50

-40

-30

-20

-10

(c)

Figure 5.8: Data log-likelihood plots with ∗ representing the start of a new class for Duffing system

using online HSDF (i.e., without off-line PFSA revision) with adaptive CRP formulation under

different noise contamination levels - Plate (a) SNR = ∞, Plate (a) SNR = 9 and Plate (b) SNR

= 1.

Table 5.1: Performance comparison of algorithm versions under different noise levels.

Error %

Algorithm SNR = ∞ SNR = 9 SNR = 1

(∞ dB) (19.08 dB) (0 dB)

HSDF + Classical CRP 12.94 16.50 16.50

HSDF + Classical CRP + PFSA revision 5.50 6.25 6.25

HSDF + Adaptive CRP 4.75 5.75 7.00
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distribution of the states are derived from the Dirichlet process. HDP-HMM techniques have been

used in learning switching linear dynamical systems (SLDS). Note that the idea of stickiness has

been adopted from the HDP-HMM literature as we aim to extract features for more realistic and

general cases of nonlinear dynamical systems in a fast and computationally efficient manner.
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Figure 5.9: Performance of HDP-HMM approach for time series with two features under different

noise contamination levels - Plate (a) SNR = ∞, and Plate (b) SNR = 1.

For comparison purposes, we implemented the codes made available on the authors’ webpage 1

that uses a Gaussian observed model type with Normal-Inverse-Wishart (NIW) prior, which we

found to be producing best results for all use cases. The results for the HDP-HMM approach under

the noiseless (SNR = ∞) and the most noisy (SNR = 1) cases are shown in Figure 5.9. Note that

the HDP-HMM Fox et al. (2011) algorithm classifies each data point individually, being a sampling

technique. Hence, a majority voting was done to select the most prominent class in each epoch

(i.e., 1000 data points as defined earlier) for a more realistic comparison. From the plots, it is

quite evident visually that our proposed approach has better accuracy which can be explained by

the fact that SDF inherently is an efficient way to model nonlinear system behavior. Also, the

performance of the HDP-HMM approach suffers significantly in the presence of a large amount of

noise in the signal. However, we note that HDP-HMM approach correctly identifies the number of

1https://www.stat.washington.edu/ ebfox/software.html
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Figure 5.10: Performance comparison of (a) HSDF and (b) HDP-HMM approaches for time series

with three features under no noise condition.
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Figure 5.11: Performance comparison of (a) HSDF and (b) HDP-HMM approaches for time series

with three features under SNR = 1 condition.
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features present in the non-stationary time series data which is significant. We performed further

comparison using the 3-features case, and present the results in Figure 5.10 and Figure 5.11 for the

SNR = ∞ and SNR = 1 cases respectively. It can be observed that our algorithm still performs

better in both the identification of the total number of features present in the time series data as well

as in classifying them. Finally, the quantitative performance of HSDF and HDP-HMM (Gaussian

NIW option) for the two and three features cases are summarized in Table 5.2. Note, the smaller

time requirement for our proposed algorithm compared to that of HDP-HMM is primarily due to

the fact that there is no sampling step or latent variable involved in the HSDF approach. The

computation time reported here is achieved with MATLAB implementations on a 2.1 GHz Intel

Xeon(R), 1200 MHz CPU with 64GB RAM and UNIX OS.

Table 5.2: Performance comparison of HSDF and HDP-HMM approaches on simulated datasets

Method Online HSDF HDP–HMM (Gaussian NIW)

Noise level (dB) SNR = ∞ SNR = 0 SNR = ∞ SNR = 0

2 features
Error(%) 4.75 7.00 48.25 57.50

Time(secs) 66.1 65.0 423.0 419.7

3 features
Error(%) 7.25 26.50 56.25 76.75

Time(secs) 88.1 112.4 418.0 426.8

5.5.3 Real use case of energy disaggregation

The aim of energy diaggregation is to determine the energy (typically electrical) consumed

by each end use (or appliance) in a building at multiple time periods given the total (mains or

transformer) power consumption signal. Typically, supervised approaches are used to solve the

disaggregation tasks where unique end use signal characteristics are learned using labeled data

and the inference process aims to detect such characteristics from the total power consumption

signal. However, labeled data for every possible end uses (and their complex combinations) may be

extremely difficult to obtain in real life. Therefore, unsupervised approaches that can reliably detect

unique signal characteristics and the transitions from one to another can be extremely useful in
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deploying energy disaggregation algorithms in the field. Therefore, our proposed algorithm can be

an excellent candidate for this purpose. To demonstrate the efficacies of our approach in this regard,

we leverage the publicly available Reference Energy Disaggregation Dataset (REDD) (Kolter and

Johnson (2011)). This data was collected from 6 homes in Boston Massachusetts over a period of

3-19 days. The dataset has two varieties: low frequency and the high frequency. The high frequency

versions are taken at 15KHz, thus requiring high precision and costlier hardware setup compared

to the low frequency setup. From the standpoint of hardware and storage cost reduction as well as

research with a wider impact, we implement our online HSDF scheme on the low frequency dataset.

The low frequency dataset contains two mains power that were recorded at 1Hz frequencies, while

the end use consumption were recorded at 2/7Hz giving a total data record 321, 984 data points

(see Batra et al. (2014); Kolter and Johnson (2011) for a more detailed description of REDD).

5.5.4 Ground truth formulation, results and performance comparison

In order to establish certain ground truths for the study involving REDD, signals from individual

end uses at different time instances were mixed-and-matched, similar to how the simulated signals

were generated, but with the distinction that this are recorded real-life datasets. Such mix-and-

match was required to ensure reliable ground truth for our study as well as circumvent certain

issues due to the non-uniformity in the sampling frequency of the mains power and the end uses.

For our test case, individual end use and their complex combinations are identified by simply giving

class labels, i.e., 1, 2, · · · , The two test cases considered are described as follows:

Homogenous features case study: In this case, an end use or a combination of end uses

was described by a single time series pattern selected from the REDD. Note, due to variations in

usage patterns and other load requirements, a particular end use or a certain combination of end

uses may demonstrate different signal characteristics at different time periods. Such scenario was

termed ‘energy disaggregation with heterogeneous features’ (investigated in the next case study),

however this case study deals with homogeneous features where test time series were generated by

randomly concatenating unique time series segments representing different classes, i.e., different
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(a)

(b) (c)

Figure 5.12: Concatenated power consumption for 3 randomly chosen end uses with homogenous

characteristics in (a), and corresponding feature identification results via: (b) Online HSDF and

(c) HDP-HMM; at slow time epochs each consisting of 6, 172 fast scale datapoints ≈ 6 hours.

end uses and their combinations. This case study is particularly useful to test the robustness of

the proposed algorithm in the sense that it should be able to identify a previously observed pattern

correctly and not learn new PFSA model to represent it. Again, the associated ground truth is

available since the test dataset was constructed with only some of the end uses of REDD. Figures

5.12(a) and 5.13(a) show the time series for K = 3 (with slow time epochs each consisting of 6, 172

datapoints at the fast time scale ≈ 6 hours) and 4 (with slow time epochs each consisting of 12, 384

datapoints at the fast time scale ≈ 12 hours) classes respectively that results from concatenating

certain fixed patterns from different end uses and from their complex combinations. The results in

Figures 5.12(b) and 5.13(b) show that algorithm performs accurately (0% error) when the features

are homogeneous. Note that in these results, online HSDF is able to effectively perform both class

retention and transitions to a new or previous observed class. When compared to the performance of

HDP-HMM results shown in Figures 5.12(c) and 5.13(c) (with errors of 56% and 60% respectively.
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(a)

(b) (c)

Figure 5.13: Concatenated power consumption for 4 randomly chosen end uses with homogenous

characteristics in (a), and corresponding feature identification results via: (b) Online HSDF and

(c) HDP-HMM; at slow time epochs each consisting of 12, 384 datapoints ≈ 12-hours.

the wide error margin can be possibly attributed to excessive stickiness). Online HSDF is however

able to overcome such problems via using the rate of change of data likelihood along with the actual

values of likelihood with respect to the existing classes.

Heterogenous features: Here, a particular end use is (or a certain combination of end uses

are) not constrained to have a single pattern at different time periods. As for a certain end use

(or combination), patterns were randomly selected from different time periods such that there is

a high chance that time series patterns may be quite different for the same ground truth label.

Therefore, the unsupervised algorithms can generate new classes for the same ground truth label.

However, algorithm was evaluated using this case study to investigate if it is able to identify

certain underlying similarities between seemingly different patterns with the same ground truth

label. Figures 5.14 and 5.16 show the time series used in this case study with K = 3 and 4 (ground

truth) classes respectively. Figures 5.15(a) and 5.17(a) show the performance of the online HSDF
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Figure 5.14: Concatenated power consumption for 3 randomly chosen end uses with heterogenous

characteristics (parts highlighted in the solid purple and red dash-dot boxes represent features with

different ground truth labels).

algorithm and Figures 5.15(b) and 5.17(b) show the performance of the HDP-HMM algorithm for

the time series with 3 and 4 (ground truth) classes respectively. While the overall performance

deteriorates compared to that in the homogeneous case study for both algorithms, online HSDF

still performs better than the HDP-HMM algorithm. Further analyzing the errors, a few regions -

purple (solid) and red (dash-dot) boxes marked in Figure 5.14 represent two different features but

identified as similar by both algorithms due to their mostly similar characteristics. On the other

hand, similar highlights in Figure 5.16 show two slow time-scale epochs with the same ground truth

labels. Both algorithms fail to detect the similarities due to significant difference in scale and other

characteristics. The slow time scale epochs highlighted in Figures 5.14 and 5.16 are also shown by

similar purple (solid) and red (dash-dot) boxes in Figures 5.15 and 5.17 respectively. To address

such issues, a more suitable (possibly optimized) slow time-scale epoch length may need to be

identified to capture the quasi-stationary characteristic which will be an important future work.
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(a) (b)

Figure 5.15: Feature identification results of concatenated power consumption for 3 randomly

chosen end uses with heterogenous characteristics (parts highlighted in the solid purple and red

dash-dot boxes represent features misclassified by both algorithms as similar while they have dif-

ferent ground truth labels) via: (a) Online HSDF and (b) HDP-HMM; at slow time epochs of ≈
12 hours.

Remark 5.5.1. The best results obtained for the HDP-HMM required the use of stickiness options

in all the cases considered, otherwise many unstable transitions occur in a hunting like situation.

On the other hand, with ‘stickiness’, it tends to be overly sticky leading to some errors as seen in the

results. We believe that this observation is most likely due to the choice (in the publicly available

code we used) HDP-HMM’s stickiness hyper-parameter having only 2 states – either sticky or not

unlike online HSDF’s adaptive stickiness capability.

Table 5.3 summarizes the results for comparing online HSDF with HDP-HMM. Note, the 3

class scenario in the homogeneous features case study requires relatively longer time as it uses a

reduced epoch length, resulting in more slow time-scale epochs (50 as opposed to 25 in other cases)

for computation as seen in Figure 5.12.

For emphasis, all the computation times reported here are based on the MatLab implementations

of the algorithms.
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Figure 5.16: Concatenated power consumption for 4 randomly chosen end uses with heterogenous

characteristics (parts highlighted in the solid purple and red dash-dot boxes represent features with

same ground truth label 3).

5.6 Summary

To summarize, a hierarchical feature extraction technique has been formulated to extract and

analyze features from time series dataset of potentially increasing (streaming type) time records.

The algorithm showed that the rate of change of likelihood was more beneficial for reducing model

complexity than the known likelihood when learning models from dataset. The proposed algorithm

is tested and validated using time series data generated from well-known nonlinear dynamical sys-

tem simulation involving Duffing and Van der Pol equations as well as a publicly available reference

energy disaggregation dataset (REDD) related to the important problem of energy disaggregation.

We demonstrate the efficacy of the algorithm under various noise contamination levels and in com-

parison with the competing HDP-HMM approach. We note that a key advantage of the proposed
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(a) (b)

Figure 5.17: Feature identification results of concatenated power consumption for 4 randomly

chosen end uses with heterogenous characteristics (parts highlighted in the solid purple and red

dash-dot boxes represent features misclassified by both algorithms as different while they have the

same ground truth label 3) via: (a) Online HSDF and (b) HDP-HMM; at slow time epoch of ≈ 12

hours.

Table 5.3: Performance comparison of HSDF and HDP-HMM approaches on low frequency REDD

Method Online HSDF HDP-HMM (Gaussian NIW)

Cases 3 classes 4 classes 3 classes 4 classes

Homogenous features
Error(%) 0.00 0.00 56.00 60.00

Time(secs) 5.9 8.3 1818.3 † 447.2 †

Heterogenous features
Error(%) 4.00 56.00 ‡ 56.25 ‡ 80.00 ‡

Time(secs) 3.8 4.3 598.9 † 454.6 †

† The reported time may not be optimum since Thomas Minka’s lightspeed toolbox support Minka

(2017) was not compatible with the current MATLAB 2017 version. Also the algorithm requires

an unspecified number of Gibbs sampling.

‡ Indicates very large errors partially due to ground truth issues as well as failure scenarios for

the algorithms.
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technique is its low computational and memory complexity. Hence, it can be extremely suitable

for on-board real time applications.
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CHAPTER 6. FEATURE EXTRACTION FROM SPATIOTEMPORAL

DATA – SPATIOTEMPORAL PATTERN NETWORK (STPN)

In this chapter, a spatiotemporal pattern network (STPN) approach is proposed for analyzing

energy demand by individual household appliances from the whole building dataset and predicting

the energy supplied by an array of wind turbines. The ideas behind the approach are methodically

and mathematically presented, and the algorithm is subsequently tested on real-life spatiotemporal

observations.

6.1 Introduction

Symbolic Dynamic Filtering (SDF) have been described in Subsection 2.7.2, and an application

of it shown in Chapter 5. Furthermore, in Subsection 2.7.3 a D-Markov extension of SDF was de-

scribed. Here, multiple applications are proposed: one furthers the application of SDF for temporal

applications while the other includes spatial consideration of the temporal dynamic systems.

To facilitate energy prediction for systems with both spatial and temporal characteristics, prob-

abilistic graphical models (PGMs) may be employed as the spatiotemporal interactions are natu-

rally suited for graph representation and can be evaluated by the associated probabilities. PGM

encompasses a variety of models described by conditional dependence structures, so-called graphs,

including Bayesian networks and undirected/directed Markov networks, and can be used to deal

with dynamical systems and relational data (Koller and Friedman (2009)). Bayesian networks are a

type of PGM that capture causal relationships using directed edges (Koller and Friedman (2009)),

where the overall joint probability distribution of the network nodes (variables) is computed as a

product of the conditional distributions (factors) defined by the nodes in these network. However,

prediction problems are not straightforward for Bayesian networks, as they only encode node-based

conditional probabilities, and the approximation of the joint distribution using node-based struc-
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tures is often intractable. This is because a certain directed acyclic graphical structure may not

allow for easy and exact computation of certain probabilities related to inference questions.

6.2 Background and Motivation

To address prediction problems in energy systems, this chapter presented a new data-driven

framework (namely spatiotemporal pattern networks, or STPN) to leverage the spatiotemporal

interactions of energy systems for prediction. STPN was built on SDF to capture the spatiotem-

poral characteristics of complex energy systems. It also implements prediction at both spatial and

temporal resolutions. For validation purpose, the proposed approach was evaluated on two repre-

sentative case studies. The first was taken from the energy supply side, wind power prediction in

a large-scale wind farm. The second case study was from the energy demand side, home energy

disaggregation (also as non-intrusive load monitoring (NILM), a well-established problem that in-

volves disaggregating the total electrical energy consumption of a building into its constituent load

components without the necessity for extensive metering installations on individual household or

appliances (Hart (1992); Zeifman and Roth (2011); Cominola et al. (2017)).

The main reason for choosing an energy production system and the non-intrusive load monitor-

ing problem on the demand side, was to demonstrate the effectiveness of the proposed approaches

on both sides of the energy meter. Note that as penetration of renewable energy systems increases,

prediction accuracy becomes ever more important. This is because without accurate prediction of

renewable energy production, it is difficult to control the power distribution, pricing and scheduling

of other energy sources. Insights into the electric load breakdown were required in order to perform

effective demand response and load shaping for peak power reduction. Furthermore, if inexpen-

sive energy disaggregation approaches are widely deployed, actionable spatiotemporal information

could be obtained on the types of load components that could respond to local overproduction of

renewable energy such as wind power.

The main contribution was the demonstration that the proposed data-driven modeling scheme

could efficiently learn spatiotemporal characteristics of a distributed energy system in a scalable
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and computationally efficient manner. The modeling scheme can enable high-accuracy prediction of

energy production (for a distributed generation system such as wind farm) and energy consumption

(for a complex combination of electrical energy end uses in a building). For wind turbine power

prediction, the spatiotemporal characteristics between different wind turbines are identified, while

for home energy disaggregation the complex coupled temporal features are revealed. An STPN-

based convex programming method is presented in this work in order to improve energy prediction

and disaggregation performance. Algorithm’s performance was compared with other competitive

and state-of-the-art data-driven modeling techniques to demonstrate the significant improvement

in accuracy recorded. While energy prediction is critical, the data-driven modeling strategy also

opens up many other applications such as performance monitoring, fault diagnostics, control, and

optimization in many large energy systems that are difficult to model using traditional physics-

based principles.

6.3 Spatiotemporal Pattern Network

In this section we presented the construction details of spatiotemporal patter network (STPN)

for dynamical systems, A and B, based on the concepts of SDF (Subsection 2.7.2). Such formulation

is usually preceded by discretization (Subsection 2.7.1).

6.3.1 Symbolic modeling of dynamical systems and interactions

Suppose there are two different dynamical systems A and B. In real-world problems, such

as wind power prediction, A and B can represent two different wind turbines in a large wind

power farm. Alternatively, in residential home energy disaggregation, A and B could represent

HVAC system electricity consumption and appliance electricity consumption. For each system,

there are several measured variables and typically some key observations are selected to establish

the model for analysis. For example, in a wind turbine, wind speed and wind power are the two

key observations for power prediction. It is noted that some other variables, such as wind direction

and the rate of its change, possibly affect power such that these variables can also be taken into
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account. As described in Subsection 2.7.1, there are numerous approaches that can be used; In

the research, maximally bijective discretization (MBD) was applied to the supply side dynamical

systems (wind turbines) and maximum entropy partitioning was used in the demand side dynamical

systems (HVAC, appliances, etc.). Wind speed and wind power are chosen and their input-output

relation in the continuous domain can be maximally maintained using the maximally bijective

discretization. However, for residential home energy disaggregation, the unique variable for each

part of home energy use is the energy consumption itself such that there is no input-output relation

in the continuous domain.

Figure 2.13 showed the symbol sequence generation in the form of PFSA using two different

methods, i.e., maximally bijective discretization and maximum entropy partitioning, respectively.

As described in Subsection 2.7.3, a D-Markov machine can be represented by a PFSA using previous

D symbols to indicate a particular state. In Subsection 2.7.3, two different systems to quantify

their spatiotemporal or temporal relationships are considered. From Figure 6.1, the state transition

matrices ΠA and ΠB show the self-relations of systems A and B respectively. Then the cross-state

transition matrices represented here by ΠAB and ΠBA, correspondingly, represent the cause-effect

relations from A to B and B to A, respectively. However, it should be noted that such causal

dependencies between systems A and B are not necessarily equivalent. To quantify the relationships

in a D-Markov machine, a xD-Markov machine, atomic patterns (AP) and relational patterns (RP)

were introduced in Sarkar et al. (2014), which can offer more detail. More formally, the entries of

the cross-state transition matrices ΠAB and ΠBA can be expressed by:

πABk` := P
(
sBn+1 = ` | sAn = k

)
∀n

πBAij := P
(
sAn+1 = j | sBn = i

)
∀n

where j, k ∈ QA and i, ` ∈ QB for states set Q satisfying the property in Subsection 2.7.2. The

above relations show that a cross-state transition matrix can be constructed from symbol sequences

obtained from two different dynamical systems while every entry of each matrix signifies the tran-



157

A B);( AAA
IP );( BBB

IP

);( ABAB
IP

);( BABA
IP

AP representing A

AP representing B

RP representing B to A 

causal dependence

RP representing A to B 

causal dependence

s
A

1 s
A

2 s
A

3 s
A

4 …….
s
A

n …….

s
B

1 s
B

2 s
B

3 s
B

4 …….
s
B

n …….

AA

BB

BA

AB

System A

System B

Figure 6.1: Construction of STPN: Atomic patterns (APs) and relational patterns (RPs) formula-

tion where s represents the symbol.

sition probability from one state in the first dynamical system to another state in the second

dynamical system. For instance, πBAij means the transition probability from state i in the system

B to another state j in the system A.

Moreover, we use an information-theoretic metric in order to quantify the value of the atomic

and relational patterns (the research emphasized more on the relational patterns). In this context,

mutual information is a metric of interest introduced to address the quantification. For example,

from Figure 6.1, we denote by IAA and IAB the mutual information of the atomic and relational

patterns, respectively, associated with systems A and B. Formally, the atomic pattern of system A

is expressed as follows:

IAA = I(sAn+1; sAn ) = H(sAn+1)−H(sAn+1|sAn )

where

H(sAn+1) = −
QA∑
i=1

P (sAn+1 = i) log2 P (sAn+1 = i)
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H(sAn+1|sAn ) = −
QA∑
i=1

P (sAn = i)H(sAn+1|sAn = i)

H(sAn+1|sAn = i) = −
QA∑
i=1

P (sAn+1 = l|sAn = i)·

log2 P (sAn+1 = l|sAn = i)

Therefore, based on the quantity IAA (defined using entropy H values as presented above), the

temporal self-prediction capability of system A can be identified.

On the other hand, the mutual information for the relational pattern involved in systems A and

B can be described as:

IAB = I(sBn+1; sAn ) = H(sBn+1)−H(sBn+1|sAn )

where

H(sBn+1|sAn ) = −
QA∑
i=1

P (sAn = i)H(sBn+1|sAn = i)

H(sBn+1|sAn = i) = −
QB∑
i=1

P (sBn+1 = l|sAn = i)·

log2 P (sBn+1 = l|sAn = i)

Hence, the quantity of IAB identifies system A’s capability of predicting system B’s outputs and vice

versa for IBA. Furthermore, based on mutual information, patterns can be assigned with weights

such that some patterns with low mutual information may be rejected in order to simplify the

model (Sarkar et al. (2014)). Based on the above analysis, it has been shown that STPN can be an

effective tool for capturing the spatiotemporal interactions between different dynamical systems.

To validate such a data-driven method, two case studies are presented in terms of supply side

dynamical systems (i.e., wind turbines in a wind farm) and demand side dynamical systems (i.e.,

home electric energy disaggregation), which demonstrate the efficacy and effectiveness of STPN.

The prediction process can be described as follows: Given a training data set in the continuous
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domain, we use partitioning methods to discretize and symbolize the data for running the xD-

Markov machine. The probability transition matrices are obtained for predictions in symbolic or

continuous domains. For symbolic prediction, we find the most likely symbol sequence for system A

given another symbol sequence of system B running the xD-Markov model numerous times. While

in the continuous domain, the prediction can be acquired based on the symbolic prediction using

expectation as follows:

W (k) =
m∑
j=1

Prk(j)W (E|j) (6.1)

where, W (k) represents the expectation of energy at the kth instant, Prk(j) signifies the proba-

bility of jth symbol occurring at the kth instant after running numerous simulations of Monte Carlo

Markov Chain, W (E|j) indicates the expectation of energy for the discrete bin labeled by symbol

j (suppose that in that bin there are m discrete symbols). The pseudo-code of energy prediction

based on STPN is as follows.

Input: Training data sets of systems i, C ′i (i represents any system), depth of D,

Output: Predicted results Ĉi,

Discretize and symbolize the continuous data C ′i to si;

Calculate state transition matrices and mutual information for si;

Calculate the expected value of energy in the discrete bin;

Use Equation 6.1 to calculate the prediction results Ĉi;

Algorithm 2: Energy prediction based on STPN.

6.4 Supply Side: Wind Turbines

6.4.1 Geographical information

In this subsection, a case study based on the supply side of energy systems, here wind turbines,

is used to validate the data-driven method proposed in this work. The STPN framework is used in

a wind turbine network in order to capture the causal dependencies among different turbines that

can be regarded as sub-systems of a wind farm. The current study used the 2006 Western Wind
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Figure 6.2: Geographical information of wind turbines under analysis which are located in Califor-

nia, between 35.28-35.33N and 118.09-118.17W.

2 3 41

5 6 7 8 9

10

11 12

Figure 6.3: Representation of STPN for 12 wind turbines.
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Figure 6.4: Discretization of a typical wind turbine systems using maximally bijective discretization

(MBD).

Integration data set obtained from NREL (Laboratory (2017)) to uncover causal dependencies

which are important for individual wind turbine power prediction in a mutual turbine-turbine

setting. For establishing the STPN, twelve wind turbines (located in California) are chosen; their

IDs can be identified as: 4494, 4495, 4496, 4497, 4423, 4424, 4425, 4426, 4427, 4361, 4313 and 4314

(labeled by 1-12) in this context, and the capacity factors are between 41% and 45% approximately.

For completeness, the geographical information of the wind turbines is also provided. The annual

average wind velocity in the area where the considered turbines are located is around 9 m/s, with

an elevation from 1019 to 1207 m above mean sea level.

As shown in Figure 6.2, twelve wind turbines are distributed in various locations, which can

be identified as nodes in the STPN represented by Figure 6.3. From Figure 6.4, the relationship

between wind speed and wind power can be observed with other wind turbines exhibiting a similar

pattern. The input-output relation involving a wind turbine is significant such that MBD enables

the maximum preservation of their correspondence in the symbolic domain. Figure 6.5 shows an

instance of symbol sequence for a wind turbine and it can be observed that most of the symbols

are 1, 5, 8 and 9.
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Figure 6.6: Mutual information of relational patterns for selected pairs of wind turbines
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6.4.2 Results and discussion

The mutual information of RP between a pair of wind turbines will first be investigated ac-

cording to the state transition matrices generated by xD-Markov machines. We set the depth as

1 for simplicity, though one can increase the memory parameter. This implies that the current

state of one selected wind turbine depends only on the last state of another selected wind tur-

bine. The effect of time lag on the mutual information between wind turbines is studied to address

the temporal characteristics. The results in Figure 6.6 show that as the time lag increases, the

mutual information decreases correspondingly. Thus, in this work one can maximize the causal

dependencies between any two different wind turbines at time lag 1.

Remark 6.4.1. In the case study presented here, we have considered 12 wind turbines and hence,

we have 12(12− 1) = 132 possible relational patterns. After removing the relational patterns with

very low MI, we have shown the evolution of MI for 7 selected relational patterns in Figure 6.6

only to demonstrate the effect of time lag on their pair-wise dependencies. As the area is located

in the state of California, the wind direction from West to East is dominant although various other

wind directions are observed in the area during different time periods. While we observe high MI

in a West to East direction, we would like to note that high MI essentially signifies the capability

of predicting a certain turbine’s energy production given the energy production of another turbine.

Such predictability, while it should depend on the wind direction, may also depend on many other

unmodeled dynamics and factors (that may be intractable by traditional physics-based methods),

which are captured by the proposed modeling framework.

The spatial characteristics between two different wind turbines is another critical factor in

STPN. Wind turbines labeled by 5, 6, 7, 1, and 10 are chosen for the purpose of such an analysis.

Figure 6.7 shows that the causal dependency between any two wind turbines reduces with the

increase of geographical (spatial) distance between them along any direction. Figure 6.8 illustrates

that the metric based on mutual information for all pairs of wind turbines as a function of the

Euclidean distance between them exhibits a generally decreasing trend. Consequently, in summary,
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Figure 6.7: Spatiotemporal pattern network for the group of wind turbines.

based on both of these observations, the mutual information based metric is an effective technique

to capture the spatial and temporal patterns in wind turbine systems.

Next, we evaluate the effectiveness of the STPN in revealing causal dependencies through wind

power prediction. The symbolic and continuous prediction of one wind turbine power is based

on the observed symbol sequence emerging from another turbine. According to the procedure of

energy prediction described above, Figure 6.9 and Figure 6.10 show the symbol prediction results

in which the predicted symbol sequences emerging from wind turbine 5 under the observations of

wind turbines 6 and 7, respectively, are compared to the true symbol sequences emerging from

wind turbine 5. It is noted that the model is trained using the data from the first half year of 2006,

while tested for the second half year of data. From those two plots it can be observed that most of

time the proposed xD-Markov machines have a strong prediction capability, while some errors may

come from the transient symbols. Moreover, by inspection it can be found that the prediction using

wind turbine 6 is slightly better than that by wind turbine 7 as supported by mutual information.



165

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.4

0.45

0.5

0.55

0.6

Spatial distance between turbines

M
u

tu
a

l 
in

fo
rm

a
ti
o

n
 (

re
la

ti
o

n
a

l 
p

a
tt

e
rn

)

 

 

Figure 6.8: A monotonically decreasing relationship for all pairs of wind turbines when spatial

distances increase.

Figure 6.11 shows that the mean square error (MSE) is a function of spatial distance between

any pair of wind turbines using wind turbines 5, 6, 7, 8, and 9 and it displays a monotonically

increasing trend. The prediction capacity in terms of symbols using the proposed STPN has been

shown. An example of energy prediction for wind turbine 5 in the continuous domain with the

observation of symbol sequence for wind turbine 6 is shown here to validate the energy prediction

method.

The plot of Figure 6.12 shows that the major trend in the actual data can be captured quite well

and accurately for the continuous domain prediction as the partitioning method MBD is effective

in preserving the input-output relation. However, a finer discretization may further improve the

prediction result in the continuous domain even though requiring a larger amount of data and

increasing computational complexity accordingly.

In the results discussed above, we show that the causal dependencies captured between the

neighboring wind turbines using STPN are capable of predicting the wind power production of a

turbine using the measured wind speed and wind power for a neighboring turbine. Note, in this

framework, we do not use the speed-power curve to predict the power output of a turbine, instead we

directly predict the power using only the wind speed and power of a neighboring turbine. However,
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we may still need wind speed prediction for a turbine in order to predict the power of its neighboring

turbine as this will be quite different from the free stream velocity prediction collected possibly from

a different source such as a meteorological forecasting service. While a detail engineering analysis

may be needed regarding that in order to transition this research to a commercial deployment, we

provide some analysis below as a proof of concept.

Figure 6.13 shows the wind speed prediction of a selected wind turbine (wind turbine 5) using

wind turbine 6 using STPN. It can be observed that using STPN can capture the primary trend

of the wind speed signal for wind turbine 5 using wind turbine 6 information and the prediction

capability can be improved if more symbols are used. Similar results can be seen for other wind

turbines as well that are not shown here. Moreover, we show two plots of mean squared error

(MSE) which imply the wind speed prediction capability decreases along with distances between

different wind turbines. Although the general wind direction is from west to east (i.e., from turbine

5 to turbine 9), we show the prediction effectiveness for both directions i.e., west to east and east

to west, as we do not know the specific wind directions and the graphical model learning does not

really depend on the directionality of wind flow pattern.

In order to evaluate the proposed scheme in wind power prediction, we compare the prediction

performance of the STPN framework with a popular alternative approach, namely, the Hidden

Markov Model (HMM) with mixture, which is adapted from HMM to deal with multiple variables.

A toolbox compatible with MATLAB (Murphy (2013)) is applied in this context. The results in

Figure 6.12 show that the proposed prediction method based on STPN framework outperforms the

HMM with mixture under visual inspection. Quantitatively, while the MSE for predicted power

using HMM with mixture is 99.885, the MSE for predicted power using the proposed algorithm

is 18.953. Therefore, it can be concluded that the STPN scheme, in which causal dependencies

between different wind turbines are captured, is an effective technique in wind power prediction.
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Figure 6.9: Symbolic prediction of wind turbine 5 behavior with the observation of wind turbine 6.
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Figure 6.10: Symbolic prediction of wind turbine 5 behavior with the observation of wind turbine
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Figure 6.11: MSEs in terms of symbolic prediction of wind turbine 5 power using observation from

other turbines: As geographical (spatial) distance increases, MSE increases.
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Figure 6.12: Wind power prediction for wind turbine 5 under the observation of symbol sequence

of wind turbine 6 using STPN and HMM with mixture.
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Figure 6.13: Wind speed prediction: Wind turbines 5, 6, 8, and 9 selected for demonstrating the

wind speed prediction using STPN. On the left hand side, wind speed prediction of wind turbine

5 is shown using wind turbine 6. On the right hand side, prediction errors are shown for a series

of turbines from east to west and from west to east, i.e., wind speed prediction of wind turbine 5

using wind turbines 6, 8, and 9 (from east to west) and wind speed prediction of wind turbine 9

using wind turbines 8, 6, and 5 (from west to east).
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6.5 Demand Side: Non-Intrusive Load Monitoring

This subsection presents a second case study based on demand side energy systems; in particular,

non-intrusive load monitoring (NILM) of electrical demand with the purpose of identifying electric

load components for residential buildings. As described in the above section, the STPN framework

is deployed similarly for electric load component disaggregation. In order to best identify the

disaggregated energy usage corresponding to each electric energy consuming component from the

total energy consumption, convex programming is applied. This step is necessary because for NILM

there is no clear input-output relation with the result that–even though the STPN is used in this case

study–the results obtained may not be optimal. Here, optimal means that the summation of all load

components of residential home energy consumers adds up to the known whole building electricity

use. Therefore, for the prediction results by STPN, a convex programming based modification is

introduced to achieve the optimal disaggregation.

6.5.1 Problem description

For this case, the data set used for energy disaggregation is based on the Building America 2010

data set available from NREL (Hendron and Engebrecht (2010)). The data is for the hot and dry

location of Bakersfield, California with ample examples of heating, ventilation, and air-conditioning

(HVAC) energy use in the summer, including lights, appliances (APPL), and miscellaneous electric

loads (MELS) along with whole building electric (WBE), which is the sum of all components. The

goal here is to apply the measured WBE time series to predict HVAC, LIGHTS, APPL, and MELS,

respectively. It is noted that one month of data is adopted where the first three weeks of data are

used for training the model, while the fourth week is used for testing and evaluating the model.

After the supervised training is complete, WBE is the only known variable.

Convex Programming: Before presenting the prediction results, the convex programming

problem setup is formulated for completeness. Suppose that the results obtained by STPN frame-

work are group truth for each part except WBE. Thus, the optimization problem can be expressed
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by

minimizeCi,i=1,2,3,4J :=

4∑
i=1

‖Ci − Ĉi‖22

subject to

4∑
i=1

Ci = S;Ci ∈ Rn≥0

(6.2)

where Ci represent the decision variables to be determined, Ĉi signify the prediction results obtained

from STPN, S is the known values of WBE, ‖Ci − Ĉi‖2 is the Euclidean norm between Ci and Ĉi.

The pseudocode of energy prediction based on STPN framework and convex programming is

shown as follows. Throughout the rest of analysis, we use STPN+convex programming for reference

of the combination of the STPN framework and convex programming technique.

Input: Training data sets S,C ′i(i = 1, 2, 3, 4), depth of D,

Output: Optimal results Ci(i = 1, 2, 3, 4),

Run all of steps in Algorithm 2

Get results by STPN and solve optimization problem in Equation 6.2

Obtain the optimal results Ci(i = 1, 2, 3, 4)

Algorithm 3: Energy prediction using STPN + convex programming.

6.5.2 Compared techniques

FHMM 2.4.3 and CO algorithms were ran off-the-shelf as available in the non-intrusive load

monitoring toolkit (Batra et al. (2014)) with an exact inference (Ghahramani and Jordan (1997))

for the FHMM. The application of FHMM is accomplished by representing each end use as a hidden

state that is modeled by multinomial distribution using K discrete values, and then summing each

appliance meter’s individual independent contribution to the expected observation (i.e., the total

expected main meter value). The AFAMAP variance of FHMM described in (Kolter and Jaakola

(2012)), which includes the trends in the hidden states of FHMM, has also been reported to be

effective in the disaggregation task. In the application of FHMM, the number of hidden states is

the number of energy end uses, while K = 3 in order to keep the computational requirements low.

Combinatorial optimization (CO) (Cook et al. (2011)) algorithm, on the other hand is a heuristic
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Figure 6.14: Mutual information between WBE and HVAC, WBE and LIGHTS, WBE and APPL,

and WBE and MELS with the increment of time lag of 2 minutes in July, 2010.

scheme that attempts to minimize the `1-norm of the total power at the mains and the sum of the

power of the end uses, given either single or multi-state formulation of the sum. The drawbacks of

CO for disaggregation tasks are its sensitivity to transients and degradation with increasing number

of devices or similarity in device characteristics.

6.5.3 Results and discussion

For validation of the proposed energy prediction approach, the months of April and July are

selected to study the prediction performance. As the Building America 2010 data set has 1-hour

sampling frequency and three weeks of data are used for training, such scale of data may not meet

the data size requirement for the construction of STPN. Building up STPN with insufficient data

may result in poor accuracy of causal dependencies between different variables. Therefore, a data

reprocessing technique, i.e., upsampling, is applied in this case and the upsampling fold is 30 such

that the sampling frequency for the data set is 2 minutes.

First, we study the causal dependencies among these five variables by computing the mutual

information. Figure 6.14 shows the variation of mutual information with respect to time lag of 2

minutes to address temporal characteristics. The depth of xDMarkov machine is still 1 such that
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Figure 6.15: STPN using variables, WBE, HVAC, LIGHTS, APPL and MELS in July.

the current symbol of any part of HVAC, LIGHTS, APPL and MELS depends only on the past one

symbol of WBE. Different from wind turbine systems, the causal dependencies between WBE and

the other four load components have decreased little with an increase of time lag, which reflects that

using WBE to predict the energy consumptions of the end uses is temporally robust. However, it

also shows that the causal dependency between WBE and HVAC in July is the maximum compared

with those between WBE and other load components (i.e., LIGHTS, APPL, and MELS) such that

the prediction of HVAC using WBE yields the greatest accuracy.

The results in Figure 6.15 show the causal dependencies quantified by mutual information

among all of five variables. It can be observed that the causal dependency between HVAC and

APPL is larger than that between HVAC and MELS as well as that between HVAC and LIGHTS.

The relationships among LIGHTS, APPL and MELS can be seen to be quite significant due to the

causal dependencies obtained in this context. In summary, this relational pattern network captures

temporal interactions between different electricity end uses that can be an effective technical tool

for energy disaggregation.
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Figure 6.16 shows the energy disaggregation of HVAC, LIGHTS, APPL and MELS using STPN

and STPN+convex programming in April. In this month, the energy consumption of HVAC is

most significant and accounts for the largest percentage of WBE. A strong prediction capability of

STPN can be observed from the plots and based on that, the STPN+convex programming is able

to further improve STPN performance, which is attributed to the constraint imposed in the convex

programming. It can also be seen from Figure 6.17 that the total energy consumption predicted by

STPN without convex programming is worse than the STPN+convex programming results, and the

optimal disaggregation appears to be achieved. However, the prediction performance for APPL and

LIGHTS is slightly worse than HVAC and MELS because the latter account for a lower percentage

of WBE, which is also evident in Figure 6.18.

Therefore, it can be implied that for energy disaggregation, a more accurate prediction can be

achieved when one load component (i.e., HVAC, LIGHTS, APPL, and MELS) accounts for a more

significant percentage of WBE. It is seen from Figure 6.18 that the prediction for the last two days

in the fourth week is worse though it is able to preserve the trend, which may be attributed to

the fact that on those two days some transient external factors, such as weather and occupancy,

affect the energy consumption. A similar observation that optimal disaggregation is achieved via

STPN+convex programming can be made from Figure 6.19. For a direct visual inspection of the

prediction capability difference, Figure 6.20 and Figure 6.21 reveal that STPN+convex program-

ming outperforms STPN alone since each part of the energy consumption is predicted optimally.

The fact that these two plots show an energy prediction difference by STPN or STPN+convex pro-

gramming of less than 5% demonstrates the efficacy and effectiveness of the proposed framework.

To show comparison between the proposed method and the current state-of-the-art techniques

in literature, we compare the STPN and STPN+convex programming method to FHMM and

CO. However, in order to obtain sufficient accuracy of the prediction results, the data set is also

upsampled for FHMM with upsampling fold being 1200. Thus the sampling frequency becomes 3

seconds and the number of discrete states used is 3. The energy disaggregation results in Figure 6.16

show that both FHMM and CO perform worse than the proposed method although the predicted
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Figure 6.16: Energy prediction of HVAC, LIGHTS, APPL, and MELS in April 2010 using STPN,

STPN+convex programming, FHMM, and CO separately shown in (b) for better visualization.
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Figure 6.17: Calculated WBE from disaggregated energy values in April 2010 using STPN,

STPN+convex programming, FHMM and CO.

WBE in Figure 6.17 looks quite promising. This effect is explained by the fact that FHMM cannot

predict the transient peaks as well as the proposed method and CO is unable to disaggregate the

load component adequately.

A similar conclusion is made as for the month of July. From Figure 6.18, it is observed that when

the energy curves are more oscillatory, the proposed method is able to outperform FHMM and CO.

It can be deduced both from Figures 6.17 and 6.19 that the proposed STPN and STPN+convex

programming offer better energy prediction in terms of WBE. Results in Figures 6.20, 6.21 and

Table 6.1 quantitatively present the differences among the proposed method (STPN, STPN+convex

programming), FHMM, and combinatorial optimization method. It strengthens the conclusion

that using STPN and STPN+convex programming yields very promising disaggregation results in

NILM. Hence, the comparison among the proposed method and FHMM, combinatorial optimization

indicates the effectiveness of the STPN-based energy prediction scheme as a viable tool for energy

prediction. We also present the computational effort required for the proposed method, FHMM,

and CO.

Remark 6.5.1. Here we also offer the computational time, memory requirements along with accuracy

(MSE) in order to compare the performance of different methods. FHMM and combinatorial

optimization methods were implemented in ipython notebook for the NILM toolkit (NILMTK)
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Figure 6.18: Energy prediction of HVAC, LIGHTS, APPL, and MELS in July 2010 using STPN,

STPN+convex programming, FHMM, and CO separately shown in (b) for better visualization.
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Figure 6.19: Calculated WBE from disaggregated energy values in July 2010 using STPN,

STPN+convex programming, FHMM and CO.
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Figure 6.20: Energy prediction difference of HVAC, LIGHTS, APPL, and MELS in April 2010

among STPN, STPN+convex programming, FHMM and CO.
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Figure 6.21: Energy prediction difference of HVAC, LIGHTS, APPL, and MELS in July 2010

among STPN, STPN+convex programming, FHMM and CO.

Table 6.1: Computational information for different methods in April.

Method Time (s) Memory (MB) Accuracy (MSE)

STPN 28.74 962.00 0.0072

STPN+convex programming 369.64 2756.00 0.0070

FHMM 38.10 798.67 0.0163

CO 11.25 769.37 0.0564

while STPN and STPN+convex programming were implemented in the MATLAB environment

and CVX package (Grant et al. (2008)). The results in Table 6.1 show that STPN can spend less

time than FHMM while more memory is required as the number of states for STPN is greater than

FHMM in this case. STPN+convex programming approach demands more computational time and

memory to run the whole process due to the optimizing iterations. FHMM and CO use less memory

compared to the proposed schemes. However, in terms of accuracy, the STPN outperforms FHMM

and CO approaches as shown in Table 6.1. The MSE of FHMM is more than two times as that

of STPN. Moreover, STPN+convex programming is able to further improve the accuracy obtained

from the STPN framework. In summary, energy prediction based on the STPN framework may be
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an effective method of energy prediction. Note, the FHMM and the CO codes used here are part

of a well–optimized toolbox and we expect that similar code and platform optimization can bring

our proposed methods to a comparable level in terms of memory and time complexity.

Case study on disaggregation using high-frequency data set: The previous test data is

sampled every hour, and an upsampling technique is applied to yield more data points to apply the

proposed method. To further test the STPN framework on high-frequency data set, two data sets

are considered, the Almanac of Minutely Power Dataset (AMPDs) (Makonin et al. (2013, 2016))

and Electricity Consumption and Occupancy (ECO) data set (Beckel et al. (2014); Kleiminger et al.

(2015)), which are sampled every minute and second respectively. The latter data set is used in

this work to validate the proposed algorithm for high-frequency data. For more details of the data

set, please refer to (Beckel et al. (2014); Kleiminger et al. (2015)). Using the collected data during

January 2013 at household 2, the validation is carried out with the same settings as for the previous

cases, where the first three weeks of data are used for training the model, while the fourth week

data are used for testing. The disaggregation results of appliance 12 (stereo) in the testing week

are shown in Figure 6.23, and the performance of the three methods (STPN, FHMM, and CO) on

each appliance is listed in Table 6.2. Results show that the STPN framework outperforms FHMM

and CO.

Table 6.2: Performance (MSE) of STPN with comparison to FHMM and CO.

ID FHMM CO STPN ID FHMM CO STPN

1 2.6 4.9 1.3 7 2.89e4 1.90e4 0.42e4

2 4.12e4 3.89e4 1.94e4 8 3558.0 3641.9 1245.6

3 946.1 1771.6 18.6 9 369.9 915.5 225.4

4 2065.7 5208.9 1724.0 11 4720.0 4166.2 925.2

5 7580.9 8871.3 1303.6 12 735.7 866.5 154.4

6 1401.0 5102.8 1291.2

*For appliance 10, performance is not calculated as all values equal to zero.

Remark 6.5.2. The case study with ECO data set is explored to show the effectiveness of the

proposed STPN framework in high-frequency data. The memory and time are not compared here,
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(a) STPN on entertainment–appliance 5

(b) FHMM on entertainment

(c) CO on entertainment

Figure 6.22: Disaggregation results using STPN, FHMM, and CO. The results are shown at every

5 minutes for better resolution (average value from 300 predictions in 5 minutes).
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(a) STPN on stereo–appliance 12

(b) FHMM on stereo

(c) CO on stereo

Figure 6.23: Disaggregation results using STPN, FHMM, and CO. The results are shown at every

5 minutes for better resolution (average value from 300 predictions in 5 minutes).
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one important reason is that the NILMTK takes several days to generate the results for FHMM

and CO.

6.6 Summary

In summary, a novel data-driven spatiotemporal pattern network (STPN) has been employed

to predict energy production/consumption. The spatiotemporal extension built upon SDF, using

xD-Markov machine learned to capture causal dependencies between dynamic sub-systems. The

network is validated by wind turbine power prediction as well as the residential electric energy

disaggregation (demand side energy) using the Building America 2010 data set from National

renewable Energy Laboratory (NREL). STPN captures salient spatiotemporal features and achieves

high-accuracy prediction. STPN plus convex programming outperform state-of-the-art techniques

in Non-intrusive Load Monitoring (NILM).
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CHAPTER 7. FEATURE EXTRACTION FROM SPATIOTEMPORAL

DATA – 3D-CONVOLUTIONAL SELECTIVE AUTOENCODER (3D-CSAE)

In Chapter 4, a convolutional selective autoencoder (CSAE) was introduced to analyze 2 di-

mensional images, hence here termed a 2D-CSAE. In this chapter the 2D-CSAE is extended to a

3-dimensional (3D) architecture to characterize the spatial and temporal scales present in flame

videos.

7.1 Background and Motivation

In jet engines and power generation systems, strict NOx emission laws have resulted in shift of

large chunk of engine design issues to the domain of engineering control (Samad and Annaswamy

(2011)) to contain the effects of combustion instabilities. Therefore, the ensuing approach to

mitigate engine-related pollution hazards has been in favor of leaner (i.e., increased air-fuel ratio),

premixed equivalent mixture that are atomized in the combustion chambers (Huang and Yang

(2009)). Consequently, a system that is burning the mixture normally (i.e., in a stable state)

experiences some shorter intermittent time scale, where it transitions to unstable state resulting in

blowout at those time scales. The main problems associated with such designs are the instabilities

which usually become more prominently sustained in longer time-scales. Spreading flames have also

been found to exhibit similar instabilities when the environmental factors (temperature, wind or

topography) couple with the fire (Fox and Whiteside (1987)). In addition, the acoustics, vibrations,

chemical kinetics etc. in turbulence couple with the flames in the combustor, together leading to

combustion instabilities. A significant improvement for the application is to return to the image

space by detecting the regions in the flame that visually characterize the properties of coherent

structures. Having implemented a detection-type network on the problem in Section 4, the results

of such network (i.e., the structures) have added appealing visual explanations for engineers about
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what instability regions in assumed stable frame look like. This in a way extends beyond classifying

the flames via a scalar metric in previous approaches (Simonyan and Zisserman (2015)). However,

the results of the approach were not justifiable for understanding the dynamics of the thermo-

acoustic instabilities.

Our approach is to attempt to characterize the dynamics of the structure of instability from

known unstable frames, as well as a corpus of expert identifiable stable frames which are extracted

off the videos that were collected from a laboratory scale swirl-stabilized combustor. The combustor

experiments and setup that produced the videos have been described in Chapter 4. In addition to

consideration of early identification of the intermittent structures present in flames that are very

similar, with subtle differences, to stable frames, we model how the intensity (or energy) is spread

around such intermittent frames.

The main interests here are to (i) derive several short videos (or streams (Simonyan and Zisser-

man (2015))) formed by grouping together short bursts (sequential windowed burst of frames) with

temporal over-lapping strides from the limited availability of hi-speed flame video, (ii) extract low

dimensional features that jointly characterize individual frames and then streams of both stable

and unstable flame respectively, (iii) learn the features of understudied combustion instability in

a robust way to aid transfer learning to extracting unsuspecting regions of coherent structures in

unseen frames, (iv) characterize these features in a hierarchical manner up until the most basic

low-dimensional manifold of the structures, (v) detect the early signals of the onset of instability

features, (vi) understand how the structures are evolving in the short sequential volumetric frames,

(vii) overcome the known effects of combustion noise that arises from volumetric expansion due to

reactions of the mixtures and perhaps the gradient in products’ flow, (viii) exploring the applica-

bility of ‘neuro-scientists’ hypothesis of ‘where’ and ‘what’ pathways (Goodale and Milner (1992))

in spatiotemporal dataset training. To achieve the state aims, we designed and developed a novel

3D convolutional autoencoder (3D-CSAE) (improving the convolutional neural network) that is

trained to act selectively, i.e., to filter examples from one flame regime and learn the structures

from the other flame regime, to (i) conditionally capture the correlation of the images at multiple
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spatial embedding (or scales) of the each image through a hierarchical systems and (ii) jointly lo-

calize, at such scales, the evolution of the coherent structures from each frame in a short sequence

to the next.

For temporal sequence modeling within a deep learning framework, long short term memory

(LSTM) (Wu et al. (2015)) of a recurrent neural network (RNN) (Graves and Schmidhuber (2005)),

multiple CNNs (Simonyan and Zisserman (2014)) are plausible ways to model the long term dy-

namics present in a spatiotemporal data, such as the sequential frames of the available dataset.

These architectures are not able to provide explanations beyond clues on actions taken. 3D net-

works on the other hand have not received so much attention in the community. Despite 3D-CNNs’

identified potentials for localizing the relationships in the 3rd dimension, the networks have not

enjoyed so much attention, probably due to the associated computational requirement. To the

best of our knowledge, the 3D convolutional autoencoder architecture is the first of its kind for the

current identification problem. However, a 3D Fully Convolutional Network (FCN), having differ-

ent configuration has been utilized for vehicle detection from 3D Lidar (Li et al. (2016)), while a

similar network was applied for a point cloud detection of vehicles (Li (2017)). We have taken an

alternative approach for proper scaling of the network parameters, and this will be evident during

experimentation. Other previous concept that share similar formulation to our approach have been

explored mainly for video classification (Karpathy et al. (2014)) and human action recognition (S.Ji

(2010); Simonyan and Zisserman (2014)). Simonyan and Zisserman (2015) specifically referred to

the temporal short time window as optical flow, and designed a multiple stream CNN, spatial and

temporal ones, for improved performance. Therefore, rather than implementing multiple streams

of the CNN separately, we model a third dimension to localize the temporal frame sequence. The

spatiotemporal decomposition of the frames used for the human recognition was related to two-

streams development. Here, such decomposition is extended beyond performing a classification

task to our end-to-end identification task, although we also evaluate the consistency of the middle

(also bottleneck or coding) layer of our network for classification task. In the current model also (as

in Akintayo et al. (2016b)) selectivity has been included. Therefore, in the light of our objectives,
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this work trains stacks of short videos – volumetric frames to characterize the early detection of

instability in unseen videos called protocols (Sarkar et al. (2015c)) and also discover more intu-

itive, consistent coherent structures evolution in the stable region. The experimental setup that

facilitated collecting the videos as well as the procedure for that purpose has been described in

Subsection 4.4.3.1.

7.1.1 3D temporal stacking of 2D frame sequence

Suppose a typical flame video V taken from the combustor is ‘deframed’ to the set V =

{I1, · · · , It, · · · , IT }, where each It ∈ RH×W is a frame image in the dimension space where, H-

height and W -width, and T is the total number of frames in the sequence. A spatial 2D-CNN

simply treats individual frame as singly occurring by randomly selecting a group in the batch-wise

run of the algorithm. Our 3D-CSAE is designed to be capable of correlating spatial scales as well

as multiple short time scales. The first step is therefore a temporal stacking of the frames. Figure

7.1 shows example frames that have been stacked together to form the shown volumetric frames.

Note that the datasets here have been color-mapped to indicate the intensity of the structures

on the frames. To achieve that using the sequential frames of the video, we parameterize the

local dependency of temporal frames by N in order to experiment on multiple values that yield

the most feasible number of sequential frames. Also, we augment the dataset by retaining, to

sufficiency level, the spatial correlation (like the 2D case) through overlaps in the time scales.

The resulting volumetric examples from stacked and overlapped 2D frames has the expression,

V (1i) = {I1, · · · , IN}, V (2i) = {I1+k, · · · , IN+k}, · · · , V (ji) = {I1+(j−1)k, · · · , IN+(j−1)k}, · · · .

Where, j is index for stacked volumetric frames, N the number of stacked frames in the volume

and k is the temporal gap between stacked volumetric frames. Each example V (ji) ∈ {S,U}, where

S is the set of all stable frames and U is the set of all unstable frames for distinctness. Few

supporting formulations have been termed optical flow stacking where the our temporal window is

termed an optical stream (bidirectional optical stream by Simonyan and Zisserman (2015)) which

considers ][1:2N ] sequence (in forward and backward) unlike our [1:N ] frame sequence. Dense
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Figure 7.1: Volumetric dataset example of short time set of stacked frames N and overlap k with

neighboring frames for stable and unstable region respectively. Note: False colors are used to aid

visualization.
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trajectory stacking using recurrence relations have also been employed (Wang et al. (2011)). The

approach in this work differs due to our need to determine N . Also, rather than having to stack

multiple parallel networks, we train a single network for the detection purpose, while checking the

consistency of its coding layer classifier. The appealing structure of our stacking scheme is that

it gives 3D-CSAE the ability to model both a 2D-CSAE (Akintayo et al. (2016b)) and temporal

streams of such sequences in a single network. It is noted here that false colors have been used in

Figure 7.1 and subsequent figures in this chapter for a clearer distinction of the structures on the

frames.

7.2 Approach

All the volumetric frames are normalized before the start of the experiment by simply removing

the overall mean and dividing the resulting values by the standard deviation. Mathematically,

this is equivalent to V j =
Vj−µ(V)
σ(V) . The data analysis approach that we deploy for the detection

and evolution is a 3D convolutional selective autoencoder. The technique explores multiple num-

ber of convolutions at multiple scales and dimensions of the volumetric frames to learn the most

representative features for the stable and the unstable frames, devoid of feature-crafting.

7.2.1 3D convolutional autoencoder (3D-CSAE)

Here, we describe the 3D convolutional selective autoencoder layers that make up the network

and background for their choices. The network provides plausible ways to explain the underlying

physics behind evolution of combustion instabilities in combustors from the available hi-speed video

observation. Our network makes use of the prepared volumetric images that have been preprocessed

as described in data collection and preprocessing (Subsection 4.4.3.1). The layers of a 2D (or 3D)

CNN (Krizhevsky et al. (2012b); LeCun et al. (1998a)) are the well known convolution, pooling,

dropout and dense layers at the fully connected stage. However, for our visualization of the output

in input-similar space, the end-to-end convolutional layers is decoded via the unpooling layers

(Akintayo et al. (2016b) or simply more convolution layers (Li (2017)). While such networks are
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standard, we describe the approach to show consistency with the tasks of detection. The convolution

layers in Figure 7.2 are initialized with a number of uniformly random 3D kernels. These scan

through batches of volumetric frames’ inputs by performing the weighted sum of scaled and shifted

product of kernels and input to produce the feature maps (also layer output). Large bank of kernels

(output channels) that bears similarities with dictionaries (Elad and Aharon (2006)) can be learned

in the process. The pooling layers are simply reducing the computational burden (introduced

by several kernel banks) by selecting only maximum activation (maxpooling) from the output of

the convolution layers. They also improve the posterior probabilities which would otherwise be

spread over several units, thus reducing the number of training epochs. The fully connected layers

are similar to the autoencoder (Vincent et al. (2008)), in which input (i.e., vectorized units) are

compressed to lower dimensions the hitherto high dimensional outputs of the convolution layers.

In the fully connected layers, parameters such as the weights and biases are also learned.

The implications for our application are that: at each convolution layer, a correlation-like

evaluation is done. Assume that we desire to come up with Y number of activated features, V (Y )

by randomly sampling for y ∈ {1, · · · , Y } kernels, K(y), then convolving and summing with X

number of input features, V (x) in the sequence x ∈ {1, · · · , X}.

V y =
∑
X

[∑
K(y)(kj , kh, kw)×V (x)((j−1)kj : jkj , (h−1)kh : hkh, (w−1)kw : wkw)

]
w=1:W−kw+1,
h=1:H−kh+1,
j=1:J−kj+1

(7.1)

With our current 3D-CSAE, the correlations are done at multiple spatial and temporal scales, while

the layer-wise network ensures that such correlations are also performed at several transformations

(dimensional equivalents) of the input volumetric flames. The space of the outputs can then be

transformed by a rectified linear unit (ReLU) activation (Glorot et al. (2011)), which attenuates

all the negative units that are most likely not useful. The fully connected layers are efficient for

showing how the the layers’ posteriors discriminates the ground truth present in the known training

examples. Finally unpooling reverts the image to its original dimensions, with more filter learned

in subsequent convolution layers. Dropout is the last important layer for most architectures which
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Figure 7.2: 3D Convolutional selective autoencoder framework that accepts bursts of volumetric

frames for exploring the short ranged relationship between 2D frames in a windowed form and

spatial relationship between adjacent volumes, and activating volumetric features’ examples in

training for each region. Dropout=0.3 in corresponding dropout layers (Asterisks (*)).
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we included to simulate some randomness into the system at each run, thus trying to simulate some

time-averaging that has been found useful for analyzing chaotic turbulence. The error in masking,

or not, of the appropriate regions are backpropagated to modify the weights and activations of the

feature maps at each run of the algorithm. The summary of Figure 7.2 is: pass the input volumetric

frames in batches through the network, obtain layer-wise outputs from the network as features and

learn to back-propagate the error between the forward output and target number image labels. To

reduce the error, the parameters are slightly adjusted in the optimization problem.

7.2.2 Network parameters and structure

We obtain best-performing networks when all the hyper-parameters are jointly selected rather

than individually, thus the space requires choosing from a wide range of hyper-parameters. For our

architecture size, the dimensions of the images are originally (H × W) = (237 × 250), but are

resized to (64 × 64) in order to reduce the computational requirement. The resulting images are

then temporally stacked with appropriate striding dimension. The chosen dimensions for stacking

and striding are related to the ability to fit through our available compute nodes because there is

the curse of dimensionality associated with 3D networks. As shown in Figure 7.2, the network has

13 layers, 4 convolution layers intermixed with 2 maxpooling layers, 2 dropout layers (Hinton et al.

(2012)) and 1 unpooling layer. The fully-connected layers consists of 3 multi-layer perceptron with

a decoder layer, a code layer and an encoder layer. Thirty percent of the maxpooled activations

are dropped out between the 3rd and 5th layers and another between the 6th and 8th layers. Each

of the convolution, maxpooling and unpooling layers uses between 32 and 128 (3 × 3 × 3) filters,

just as Simonyan and Zisserman (2014) identified 3× 3 as best choice for the first 2 dimensions of

CNN kernels. The nonlinearity activation for all the convolution layers is the already introduced

ReLU.
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7.2.3 Training

Here the parameters of the model such as the kernels of the convolution layers, the weights

and biases of the fully-connected layers of the model are learned as the data moves across the

network from the input to the output. We take a simple example of an input volumetric frame

to illustrate how the algorithm trains on the dataset. Alongside the network selectivity training

criteria of masking the stable volumes and allowing the unstable volumes, we get a feedback from

the encode layer of the network. The feed back is in terms of the distribution of the encode layer, its

consistency with the training examples and the ground truth provided by the experts. These factors

will form the bases for our discussions of the experiments. Let V (jo) be the last layers activation

for the input, V (ji) the error function is formulated from the 3D-CSAE selectivity training criterion

as follows,

f3D−CSAE(V (ji) ∈ U) = V (jo) (7.2)

f3D−CSAE(V (ji) ∈ S) = 0 (7.3)

Since this study is not intended to experiment on the optimization techniques of deep learning since

that topic forms another research area (Dauphin et al. (2014); Jiang et al. (2017a)). We simply

hold the learning rate constant at 1
1000 , used in our best performing optimization routine, RMSProp

(Dauphin et al. (2015)) that is an online method for non-stationary datasets, and for the detection

problem, we use a mean square error optimization function between the final activation and the

input data for individual units,

min f :=
∑
H×W

(V (jo) − V (ji))2|V (ji)∈U +
∑
H×W

(0− V (ji))2|V (ji)∈S (7.4)

f is the objective function that is optimized, while the optimization error is back-propagated

to change the weights and biases in the direction of error reduction. Additionally, we desire a

training that filters out stability quality in the unstable region, such that the structures are ho-

mogeneous, rather than simply learning the identity present in the ground-truth data. Therefore,
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the discriminability of the unfiltered results is desired to be reduced than what is present in the

ground truth labels Figure 7.2. Training was done in the Keras (Chollet (2015)) platform running

on Theano (Bastien et al. (2012)) backend. Due to the scale of the experiments required to obtain

the optimum hyper-parameters, the network was trained using a cluster of 4 relatively high-end

Tesla P40 graphics processing units (GPUs), each having 3840 NVIDIAR© compute universal device

architecture (CUDA) cores and with 1.531 GHz clock speed. The hardware provides huge speed-up

in the algorithm training, but testing of a selected model can be done on a low-end CPU. Typical

examples, for each region, of the feature maps learned by the network after training are highlighted

by the sides of the network in Figure 7.2.

7.2.4 Experiments

Here, the details of experiments conducted to determine the hyper-parameters that yields the

best results are provided. Seventy-five percent of all the training dataset that results from the

streams and augmentation are utilized to train the algorithm while 25% are used to validate the

results as well as set the instability threshold. Experiments sequence was initially started with

an over-complete (or excess) banks of kernels (i.e.,128), i.e., where there are many possibly sparse

kernels (due to the increased dimensionality in 3D compared to 2D), but are still efficient enough

with our GPU capability. The order of optimizing the parameters are a major aspect of our

experiment.

Our experiments begin with the same configuration as that by Akintayo et al. (2016b) (i.e

temporal window and no overlap (N = 1, k = 1)), where our 3D-CSAE algorithm is validated

to be consistent with the results (Akintayo et al. (2016b)). Steps of N or k in multiples of twos

are utilized, with the constraint that N ≥ k, still having exponential ways to combine them in

the implementation. The simultaneous ‘best’ N and k found are held constant in subsequent

experiments. Note also that Akintayo et al. (2016b) had selected 10 classes as the best result,

despite the notion that there are 2 classes in the training dataset, we therefore run ours from 2 to
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10 in steps of 1. Then, the kernel (filter) bank was reduced from 64 to 16 in order to derive the

non-sparse features from the dataset.

7.2.5 Evaluation metric and threshold

The evaluation metric for all the frames is the image KL-divergence (Akintayo et al. (2016b)).

Based on the envisaged effectiveness of the architecture in clearly distinguishing the unstable flames

and intermittent coherent structures on the stable image frames, the threshold here is taken as the

average of the 95% CI of filtered validation examples in the stable region and the 5% CI of the cor-

responding filtered examples in the unstable region – average threshold. Mathematically, the expres-

sion is: 1
2(95%CI(3DCSAE(stable validation frames))+5%CI(3DCSAE(unstable validation frames))).

7.3 Results and Discussion

It is discovered that at the same hyper-parameters as the 2D-CSAE, the ‘best’ values are N = 32

or 16 and k = 4 or 2 respectively. The latter pair being more favored in the coding layer entropy for

both regions, but more computationally burdensome and less homogeneous in the unstable region,

while the former benefits from more dataset (i.e., (N=16, k=2) had 31486 while (N =32, k=4)

had 31486 volumetric examples). The performance comparison in Figure 7.3 shows the justification

for a 3D-CSAE where 3D-CSAE in Figure 7.3(b) shows less noise in the stable region and better

distinguishes regions than Figure 7.3(c) in 2D-CSAE.

7.3.1 Visualization of layer-wise class activations

We use the best set of hyperparameters for the feature map visualization and discussions.

For such discussion, the class activity or feature maps of representative examples from the two

regions – one in the stable region and the unstable region are shown in Figure 7.2 at some back

propagation runs (also known as epochs) of the algorithm. One remarkable information is how the

features are able to develop the coherent structures at the 12th layer. The features are also able

to visualize shedding of the structures that are not characteristically coherent from the unstable



196
In

st
ab

ili
ty

 m
et

ri
c

Frame # Frame # Frame #
(a) (b) (c)

Figure 7.3: Figures showing the performances on a) the training dataset, of b) 3D-CSAE and b)

2D-CSAE with all frames evaluated in the KL-divergence metric, and their respective thresholds.

features while the whole discarded structures are shown in the stable feature maps. Note also that

learning proceeds from early epoch (or runs) of the algorithm to the point of minimum noticeable

change in the network parameter (i.e, when the training stops). As the algorithm learns better

during training, the vortex structure of instability occurring from that of a fully developed coherent

structure leads to breaking and shedding of some parts of the structures.

7.3.2 Testing protocols

The main goal of training an intelligent algorithm is to generalize to identifying similar structures

in unseen datasets. This is particularly important in this case with the large combination of factors

at play and the impossibility of human identification from a single sensor. The testing protocols

are set up rather differently from the training protocol because we are not bothered about data

augmentation. We simply use the same N value as the training dataset, but do not consider the

overlap, k. The assumption is justified by searching for the most general set of parameters for all

conditions. We also checked that the frame numbers of prominent intermittent structures in the 2D-

CSAE matched those of the 3D-CSAE, and found this to be true for most of the hyper-parameters.

Thus, 7 minutes videos at about 3.120 KHz, giving 21, 840 examples are provided in each of the

3 analyzed test protocols. These examples are then converted to 21, 840/N volumetric examples.

Where the frames are end-padded with sufficient number of zero frames if N is not exactly a factor
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of 21, 840. This ensures that the individual frames can be derived from the volumetric examples.

The protocols are identified by the ratio of the air flow (AFR) and the fuel flow (FFR) which are

expressed in liter per minutes of the indicated values. Where lpm represents liters per minutes, the

protocols are:

1. 50040to30: Protocol has AFR = 500 lpm and FFR is varied from 40 lpm to 30 lpm.

2. 60050to35: Protocol has AFR = 600 lpm and FFR is varied from 50 lpm to 35 lpm.

3. 500to60040: Protocol has FFR = 40 lpm and AFR is varied from 500 lpm to 600 lpm.

Frame #

In
st

ab
ili

ty
 m

et
ri

c
In

st
ab

ili
ty

 m
et

ri
c

3
D

-C
SA

E

Center frame # 3056 Center frame # 12200 Center frame # 12980

Figure 7.4: Evaluation of the detection results and the visualization of volumetric frames for pro-

tocol 50040to30. Arrows show direction of optical stream flow.

The results of the test protocols (Figures 7.4, 7.5 and 7.6) are shown for the overall best

hyper-parameter settings. Volumetric visualization show how the filtered and non-filtered frames

vary, while the coherent structure are retained. The unfiltered frames are contrasted with the

3D-CSAE results (or the filtered frames). The protocols generally transition from the stable region
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Figure 7.5: Evaluation of the detection results and the visualization of volumetric frames for pro-

tocol 60050to35. Arrows show direction of optical stream flow.
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Figure 7.6: Evaluation of the detection results and the visualization of volumetric frames for pro-

tocol 500to60040. Arrows show direction of optical stream flow.
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to the unstable region, similar to the 2D-CSAE (Akintayo et al. (2016b)) evaluation, however

3D-CSAE is able to clearly distinguish the stable region from the unstable region, enabling the

burst of intermittent structures, which although are similar to the 2D-CSAE results, but show

interesting frame-to-frame dynamics (transients) as shown in the frame-by-frame visualization of

some examples in Figures 7.7, 7.8 and 7.9.
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Figure 7.7: Evaluation of the detection results for protocol 50040to30 showing the first, identified

and final frames of the specially highlighted points.

The frames representing the transition from stable to unstable generally have intermediate

properties of all frames in a given volume. The protocol in Figure 7.4 however has more coherent

structures than Figure 7.5 and 7.6 in both the stable and transition regions, probably because it

has the leanest air flow rate. Thus, the coherent structures exhibit more interesting dynamics,

which are meaningful with multiple joint overlapping frames than single frame, where the single

shown structure may simply be due to the effect of a single outlier frame. Trends in a volumetric

frame of each protocol. The occurrence of structures in the stable frames is consistent in most of

the protocols with those of 2D-CSAE, but the evolution around neighboring frames are revealed
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Figure 7.8: Evaluation of the detection results for protocol 60050to35 showing the first, identified

and final frames of the specially highlighted points.
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Figure 7.9: Evaluation of the detection results for protocol 500to60040 showing the first, identified

and final frames of the specially highlighted points.
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in 3D-CSAE results. The last results confirm the presence of ’combustion noise’ when the air flow

is increased in Figure 7.6, rather than reducing the fuel flow rate in the Figures 7.4 and 7.5, but

3D-CSAE is still able to resolve the instability region.

7.4 Summary

In summary, the study shows the potential of deep learning techniques 3D-CSAE in character-

izing the stability properties of the flame video from a swirl stabilized combustor. The technique

significantly improved upon the 2D-CSAE and enables the visualization of the characteristics, and

evolution, of interesting dynamics that leads to combustion instability. The temporal streams in

addition to the spatial correlation property of convolution are effective for modeling the multi-scale

and multilevel correlation present in engines. From a sensing perspective, it is appealing that many

interesting properties can be revealed by simply measuring only flame videos, rather than fusing

observations (such as pressure, chemiluminescence, velocity, etc.) with increased sensor costs and

reduced reliability. Finally, we note that similar analysis can be conducted on observations from

real-life engines after some simulations (or training) have been done for all observed operating

conditions.
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CHAPTER 8. SUMMARY, CONCLUSION AND FUTURE RESEARCH

DIRECTION

8.1 Summary and Conclusion

Some of the techniques for extracting meaningful features from diverse dataset types have been

implemented in this research. The projects have utilized the features learned from datasets to

facilitate transfer of the performance of learned models to unseen datasets. A series of application

areas varying from degraded environment through to energy prediction have been implemented. In

particular, this research has improved on discriminative models by developing a selectivity technique

for discriminability in an unlabeled data setting.

Some of the significant contributions that were included in this research are summarized here.

The first contribution was the development and design of a low light network (LLNet) (Lore et al.

(2017)) for enhancing images taken in poorly-lit and noisy environment or with cheap imaging

sensors. The second and very significant contribution to knowledge was the development of a

convolutional selective autoencoder (CSAE) (Akintayo et al. (2016b)) for detecting the onset of

combustion instabilities using flame videos collected in a swirl-stabilized combustor. The model was

extended to a 3D version which included temporal flow to enhance the performance of the spatial

(2D) model. The robustness of the third contribution was demonstrated on the hitherto stubborn

application of detecting soybean cyst nematode eggs (SCN) (Akintayo et al. (2016a)) eggs on image

frames collected from infested farms after the frames have undergone some laboratory preprocessing.

The third contribution dealt with the development of a hierarchical symbolic dynamic filtering

(HSDF) (Akintayo and Sarkar (2017)) technique for extracting salient features from time series

dataset with application to the publicly available reference energy disaggregation dataset (REDD).

The final contribution was the prediction of energy generated and demanded using a spatiotemporal

pattern network (STPN) (Jiang et al. (2017b)).
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The conclusion here is provided in the light of the spatial, temporal and spatiotemporal datatsets

from which the hierarchical features were extracted.

8.1.1 Feature extraction from spatial datasets

Feature extraction from this class of datasets have been examined by adapting fundamental

techniques. First, a stacked sparse denoising autoencoders (SSDAs) (Subsection 2.6.1) which was

originally designed for image denoising has been adapted in training for enhancing natural images

in taken in low light environment by utilizing the hierarchical spatial features in models that

result from training on synthetically darkened images. Also, a convolutional autoencoder (CAE)

(Subsection 2.6.4) has been improved for selectively training images such that hierarchical features

that represent objects (or regions) of interest/disinterest are extracted from the images.

8.1.2 Feature extraction from temporal datasets

A Hierarchical Symbolic Dynamic Filtering (HSDF) modeling of quasi-stationary behaviors

in unsupervised, streaming-type time series has been designed as a computationally simple and

efficient technique for extracting hierarchical features from slow time-scale non-stationary time

series data that comprises of quasi-stationary time series segments. The underlying concepts of

probabilistic finite state automata (PFSA), Chinese Restaurant Process (CRP), stickiness and

likelihood change rate have been designed into the proposed hierarchical framework. The quasi-

stationary dynamics are captured at a fast time-scale using individual PFSA models at a lower

layer, transitions of the system at a slow time-scale among different quasi-stationary dynamics

are captured using similar PFSA model at a upper layer. It has been showed that tracking the

change in likelihoods of different unique quasi-stationary characteristics leads to a more efficient

algorithm. The new feature has been incorporated via a novel adaptive CRP formulation. The

proposed algorithm is tested and validated to extract features of features from various temporal

datasets.
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8.1.3 Feature extraction from spatiotemporal datasets

First, a novel data-driven, spatiotemporal pattern network (STPN) has been used to predict

energy consumption for both supply side and demand side energy systems. While symbolic dynamic

filtering (SDF) (Subsection 2.7.2) performs the discretization and symbolization of continuous do-

main data for data-level fusion of different variables in a dynamical system, a D-Markov machine is

able to capture its temporal characteristics. This work establishes another PFSA, called xD-Markov

machine, to uncover the causal dependencies between two time-series in this work. Moreover, for

the quantification of causal dependencies, a mutual information based metric is applied. Prediction

based on the STPN framework is proposed using expectation from symbolic domain to symbolic

and continuous domains. On the other hand, a 3-dimensional convolutional selectional selective au-

toencoder has been designed for visualizing the volumetric features in hi-speed videos. The videos

have been decomposed into short bursts of windowed images for training the 3D-CSAE algorithm.

8.2 Future Research Areas

Leaning on the shoulder of giants in the field, this research has presented significant improve-

ments on the current best feature extraction techniques. However, the concepts utilized are still

very far from achieving the main goal of artificial intelligence. Therefore, the following concepts

are introduced here as viable next step, taking off from the current research proposal.

8.2.1 Generative adversarial networks (GAN)

Generative models can be classified as stochastic and non-stochastic depending on the manner

in which the sample generating model is sampled from the layer above the current one. The major

non-stochastic class of generative models discovered are the auto-encoder networks (Vincent et al.

(2008); Rifai et al. (2011)) and the noise contrastive estimation (NCE) (Gutmann and Hyvarinen

(2010)). On the other hand, the stochastic generators have been given much attention, and are

further divided into:
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• the undirected graphical models with examples such as deep Boltzmann machines (Salakhut-

dinov and Hinton (2009)) and generative stochastic networks (Bengio et al. (2014)), and

• the directed graphical models having the neural autoregressive distribution estimator (Larochelle

and Murray (2011)) as example.

The directed graphical examples have a major dis-benefit of being sequentially executed (not paral-

lelizable), hence they are not included in this study. The last category are the mixed stochastic and

non-stochastic are the most recent generative adversarial network (Goodfellow et al. (2014)) and

deep convolutional generative adversarial network (Radford et al. (2016)). A combination of recent

skills for reducing the instability effects previously noticed on such networks. The more important

contributions with GANs are:

• input is the noise distribution, z, and the true data distribution, x

• rectified linear units were the activation for the generative layers

• maxout activations were used in the discriminative layers

• dropout in discriminative layer

Generative Adversarial Network (Goodfellow et al. (2014)) improves the NCE by employing the dis-

criminative model, D to monitor the generative model, G that has been adapted to a discriminative

training condition. D is trained to maximize its discriminative ability of the true distribution and

generative model’s distribution and train G to minimize its generated distribution from the true

data distribution, i.e., G to maximize the mistake of D from the data distribution. A sequential

form the min-max functional:

max
D

min
G

(
Ex∼Pdata(x)

log(D(x))− Ez∼Pdata(z)
log(1−D(G(z)))

)
(8.1)

A deterministic training of GAN can overcome the need for variational inference that is obtainable

in stochastic type network.
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8.2.2 Recurrent neural networks (RNNs) and long short term memory networks

(LSTMs)

In the temporal feature extraction domain, although short-ranged dependencies can still be

captured by the feed-forward deep network as was the case in Akintayo et al. (2016b) where con-

volutional selective autoencoder was implemented, a parallelized, distributed technique is required

for handling time sequence of the video. Recurrent neural networks and long short term memory

networks and their variants would probably be the most suitable for the problem. Recurrent neural

networks (RNNs) (Graves and Schmidhuber (2005); Pascanu et al. (2013); Graves (2014)) model

sequence-type networks, especially when problems like image captioning, video classification and

machine translation by components that incorporate memory in the model. The major architec-

tural addition for achieving these goals is the feedback loop for the network state. In the feedback

process, the network is given some memory for managing what information is retained at the out-

put, unlike the standard feed-forward types so far considered.

Long short-term memory, LSTM (Gere et al. (2000)) enables deep-stacking of recurrent neural

networks by reducing the consequent effect of non-uniform gradient through in the layers of the

network that arises. LSTMs enable recurrent networks to be trained via backpropagation through

time, BPTT (Mozer (1989)) by unrolling the state dynamic feedback loop as 2 feedforward loops

whose weights are shared usually by averaging. LSTMs model the state machines with components

such as the blocks, units and gates mainly for operating on the input sequence. However, the prob-

lem with training such structured network has been discussed (Pascanu et al. (2013)) to be amongst

others, the presence of many several local minima and saddle points. Also, there are certainly more

weight symmetricity that have the potentials of resulting in increased non-identifiability problems

over the feedforward versions.
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APPENDIX A. ARCHITECTURAL PLATFORM AND HARDWARE

A.1 Introduction

Before the proliferation of high performance computing devices, processing times with Central

Processing Units (CPUs) have been reported to increase exponentially with number of feature (Lee

and Landgrebe (1993)). Nowadays, such computation times for extracting similar features have

drastically reduced by several hours using graphics card that have several CUDA cores (Mckee

(2017)). The main trade-off between CPUs and GPUs are latency and computation throughput

requirement. While GPUs provide better throughput, latency for accessing the cache still favor

the CPUs. GPUs also improved the energy efficiency by their increased silicon use. The important

factors in choosing such hardware are: the model number, memory bandwidth that is related to

the Dynamic Random Access Memory (DRAM), the ease of ‘crossfire or ‘link multiple graphics

cards, the host (or CPU) efficiency, the wattage rating, its number of connectors, the size of the

computation to be done, etc. NvidiaR© corporation is a reputed company in the history of graphics

card Nvidia R© launched its compute graphics card in 2006. The company was known as the

first to adapt GPUs for computation. The main idea with GPUs are to utilize many more lower

frequency and less energy-consuming cores than those of the CPUs for scanning and performing

computations on units of higher dimensional arrays in parallel. The tasks to be performed by the

block of threads are called the jobs. Sometimes, the jobs are self-containing (i.e., computation

is completed without needing the host CPU), heterogeneous computing involving both GPUs and

CPUs have been leveraged. The latter allows slower but large memory requiring computation while

the former does its job of fast distributed computing. Some examples of syntax are the register

declaration with a type, arithmetic and logics operation, memory type declaration and complex

operations such as branch. Previously slow matrix decomposition computation were among the

first algorithm to benefit from the compute capability of GPUs (Davis (2006)). The procedure
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for linking remotely to the compiled program at runtime is the Single Program Multiple Data

(SPMD). The compilation of codes in CPUs are usually interpreted with C/ C++ compilers while

GPUs use the custom written compilers and assemblers such as NVCC or Conpute Universal Device

Architecture (CUDA). For instance, the main steps in parallelizing each CUDA files are shown in

Figure A.1. Several drivers have facilitated the graphics processing objectives such as shaders

Compilation 
(NVCC or CUDA)

Splitting

Preprocessing 

Merging

Figure A.1: Steps in CUDA computings

as well as high performance computation such as efficient lower-upper matrix decomposition. The

compute universal device architecture (CUDA) driver, DirectCompute by MicrosoftR© and OpenCL

by Khronos/Apple R© are examples of such drivers.

A.2 GPU Computing Libraries

There are increasing number of computing software that efficiently utilize the heterogeneous

and hierarchical computing capabilities of GPUs. A quick search of deep learning software will

reveal that there are quite a few of them already available. This section will describe few of useful

drivers that enables training deep learning software.
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A.2.1 Open Multi-Processing (OpenMP) and Open Computing Library (OpenCL)

Shared memory multiprocessing (OpenMP) is a transparent (in terms of sharing) parallelization

library where a master thread engages a number of slave threads, which operates either in parallel

or in series. Each slave thread has an ID which is spurned to enable performing part of the code.

Runtime allocates threads to differe==nt processors. Performance of OpenMP is dependent on

vendor and a set of clauses usually included as functions to enable the application programming

interface (API) – OpenMP to perform the tasks shown in Figure A.2 (Commons (2017)). For

instance, parallel control structures are in place to govern the structure when parallel computation

is done. Despite the advantage, memory bandwidth limitation, race conditions and hierarchical

sequential execution waiting reduces the effectiveness at most times.

Courtesy: “https://commons.wikimedia.org/w/index.php?title=File:OpenMP_language_extensions.svg&oldid=246140665”

Figure A.2: OpenMP extension language schematic.

In addition to OpenMP’s parallelizing capability, heterogeneous computing interfaces GPUs

with CPUs or other devices such as digital signal processors (DSPs) and Field Programmable Gate

Arrays (FPGAs) are enabled via Open computing language (OpenCL). OpenCL was reported to

be originally developed by Khronos research group at AppleR©, but now has the support of other
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companies and it is also open to the community for continuous development. OpenCL can spurn

several computing units from a single computing device ensures that languages for OpenCL are

compiled at runtime. The hierarchy of memory in OpenCL ensures that there is global, low latency

read-only memory, local memory and private memory. The API has its own version of C language,

termed OpenCL C.

A.2.2 Compute Universal Device Architecture (CUDA)

CUDA (Mivule et al. (2014)) was developed by NvidiaR© as an improvement on OpenGL and

Direct3D for easier parallel programming. It offers real time high resolution 3D intensive compu-

tation plus multi-core applications. CUDA is touted to have OpenCL capability, therefore uses its

own Cuda C programming that could be written in C, C++ or Fortran. The data goes through

from the main memory to the GPU memory and back while virtual instruction sets flow from the

CPU to the GPU as shown in Figure A.3, courtesy of Commons (2017). The instructions are either

MIMD or SIMD depending on the parallelization and heterogeneity provided. Since they are op-

erated on multiple grids which have multiple threads and ultimately multiple processing elements

called cores (Figure A.5). This simple flow enables complex computations such as fast Fourier

transform computation, large number sorting efficiently. CUDA has versions which improves speci-

fied libraries with added capabilities such as CUDNN – the CUDA deep neural network for efficient

deep network models, CUSOLVER – the dense and sparse matrix solver of CUDA, etc. CUDA also

enables 3D point cloud processing, complex graph theoretic analysis such as push-relabel algorithm

as well as sorting of large sequence in addition to efficient matrix multiplication.

Thread execution are an important factor of the architecture by the manufacturer. Nvidia

Corporation for instance uses the virtual type parallel thread execution (PTX) in the system

(Figure A.4), while organizations such as AMD, Samsung etc., designed the heterogeneous system

architecture (HSA) type of Virtual instruction set architecture.

The multiprocessor of graphics processing unit with the host interface is shown in Figure A.4.

Single program multiple data (SPMD) utilizes multiple threads, the threads in turn have several
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Courtesy: Wikipedia

Figure A.3: Schematics of the CUDA processing flow with GeForce 8800 illustrative GPU.
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Courtesy: “http://slideplayer.com/slide/9139861/”

Figure A.4: GPU Architecture Overview showing the instruction multiprocessing threads.

cores which are grouped together as clusters. An interconnection network splits and merges the

data according to the memory requirement from the host (CPUs) dynamic random access memory

(DRAM) to the GPU and vice versa. NVIDIAR© GPUs for instance have different micro-architecture

that differ in the features. There are also variant of the architecture called the Multiple Instruction

Multiple Data (MIMD) where the data and the instructions are both varied. Tesla, Fermi and

Kepler microarchitecture are some of the designs by NVIDIAR© Inc. for graphics and computation.

The CUDA core for a streaming Fermi micro-architecture is shown in Figure A.5

Each core executes parallel threads, while the streaming microprocessor executes a group of

threads called blocks. The top level kernel(s) (also the GPU function(s)) execute(s) on the grid

(or GPU node). There are also registers and local memory associated with the threads, while the

memories are shared by the threads in the blocks, and a higher latency and lower bandwidth (than

shared memory) is accessible to all the grids. In summary, while CPUs process data in series, the

GPU performs a massive parallel computation by executing kernels as grids of blocks of threads.
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Courtesy: 

“https://www.cc.gatech.edu/~vetter/keeneland/
tutorial-2011-04-14/02-cuda-overview.pdf”

Figure A.5: Fermi streaming microprocessor CUDA core with FP floating point and INT integer

computed in different streams.

A.3 GPU Hardware

The hardware support for the computations are becoming pretty cheaper and more efficient for

the computation. Improvement in designs of the GPUs, low energy consumption and high silicon

usage are some of the basic factors that enhance GPU performance. The graphic cards are built on

a support base machines, and these base machines are usually cheaper. As at the time of compiling

this research, the Self-aware Complex Systems (SCS) laboratory is endowed with the following

graphics cards and machines.

GeForce Titan Blacks: Titan blacks were released by NvidiaR©s in 2014. The cards are fast,

powerful, cool and quiet. Titan black has 2880 CUDA cores by design. They have 6GB of Virtual

Random Access Memories (VRAMs). The cards were Nvidias first success at optimizing both gam-

ing and computation experience. However, like the recent improvements, Titan Black utilize the

PCI express cards 3 for improved communication bandwidth. Titan Blacks support HDMI, VGAs

and have a video. Including specifications by Nvidia (2017), they have a video. As of now, Titan

black cards only support CUDA with compute capability of 3.0.

Geforce Titan X: GeForce Titan X was introduced in the early part of 2016, and it was based

on the Maxwell type streaming multiprocessor. Titan X (Maxwell) has pretty good single floating

point performance, sometimes similar to the more recent versions, P40s. Titan X has 3072 CUDA

cores that ensure time-effective computation. The cards have 12GB of Virtual Random Access
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Memories (VRAMs), Titan X is very efficient in price ($1000) of Floating Point Operations per

seconds (FLOPS) at 6.9GFLOPS/$) compared to the recent P40s (1.7GFLOPS/$). Titan Xs and

P40s are enabled by the current latest CUDA compute capability (of 5.2).

Pascal Titan X: Titan X (Pascal) provides some significant improvement on the performance of

the Titan X (Maxwell). The cards were released in the middle of 2016. Some of the improvements

to the Maxwell version include 3584 CUDA cores, faster clock and memory application rates.

Pascal P40: Pascal P40 was released by NvidiaR© in late 2016. Cards have pretty good double

floating point performance than the Titan X and include INT8 capability for inference. The cards

have 3840 NVIDIAR© CUDA cores. With 24GB of VRAMs, Pascal P40s are suitable for high di-

mensional computation such as 3D point cloud reconstruction. Pascal P40 cards utilize air cooling

in multiple directions as the trade-off for the improved performance. They have a compute capabil-

ity of 5.2 for CUDA computation. However, they are more expensive at $3000 per card (Redmon

(2017)). The latest so far are the Tesla K80 which are $5000 per card.

Among the several more graphics cards support in SCS laboratory, the cards in Table A.1 have

been particularly useful throughout the period of this research.

Table A.1: Available facilities in Self-aware Complex Systems laboratory in September 2017

Graphic card Quantity (pieces)

NvidiaR© GeForce Titan Black 2

NvidiaR© GeForce Titan X 4

NvidiaR© Pascal Titan X 4

NvidiaR© Pascal P40 4

Currently,The Titan Blacks operate via NvidiaR©’s runtime driver version 375.66, the GeForce

Titan Xs operate via the driver version 385.66 while the Pascal Titan Xs and the P40s utilize driver

versions 375.26, but these could be easily updated. This research enjoyed access to all the machines

and the clusters, but the primary machine had one Titan black and a Titan X (Maxwell).
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A.4 Summary

In summary, decisions on speed and performance of a machines are dependent on the available

capital resources. However, the type of project deliveries should also be considered before deciding

for particular hardware.
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APPENDIX B. ALGORITHM IMPLEMENTATION SOFTWARE

Here, we provide a brief discussion of the popular deep learning software that is available for

the massive parallel and heterogeneous computations required by machine and deep learning code.

B.1 Trending Deep Learning Platforms

We illustrate all the available software with an example of defining the simple logistic regression

layer. Mathematically logistic regression is defined for a given class Y=1 given a unit i of the input

x(i) and all units indexed by 1, · · · j, · · · , J as, P (Y = 1|x(i)) = P I = eWx(i)+b∑J
j=1 e

Wx(j)+b
where W and b

are the weights and biases of the network linking the input units to the output units. Generally, the

platforms are developed and managed by industries such as Google Inc. (TensorFlow), academic

groups such as Universite de Montreal (Theano) as well as by individual efforts such as Francois

Chollet (Keras). In these computing software, the important considerations are the details on the

operating systems platforms supported, the backends of the software that use the computation

graphs, the interfaces of the software and other parallelization (OpenMP or CUDA), computing

library (OpenCL) and models supported.

B.1.1 Caffe

Caffe was created by Yangqing Jia and developed by Evan Shelhamer (Jia et al. (2014)) at

University of California, Berkeleys Vision and Learning Center (BVLC). Caffe is built directly on

C++ backend but can be wrapped with Matlab (MatCaffe) and Python (PyCaffe) front end. It

has active support of OpenMP. However, in the original form, OpenCL support was not provided,

but under the hood synchronization of the data in CPUs and GPUs as blobs are possible. It is

arguably the fastest parallel platform because of its text-forms natural independence of front end

programming language. Also it has the capability of allocating memory on demand. Caffe has the
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shortcoming that the definition of the text-like model usually involves more explicit coding skills.

For example, a Logistic regression would be defined thus:

name: ”log-reg”,

type: ”Data”,

top: ”data”,

top: ”label”,

data param { { { source: ”Input leveldb” batch size: } } } ,

Algorithm 4: Caffe Logistic regression definition

The example layer (logistic regression) and the data parameters (source and batch sizes) are

differently defined and usually require using more lines of code to achieve simple tasks. The top

and the bottom type data definition requires understanding the connectivity of the computation

graph. Also Caffe has no support for the generating model class of Restricted Boltzmann Machines

(RBMs). The latest version called Caffe 2 has been recognized by Facebook and Yahoo, among the

popular big promoters.

B.1.2 Theano

Theano was developed by a team of researchers at LISA Lab at Universite De Montreal, Canada

(Bergstra et al. (2010b); Team et al. (2016)), sometimes in 2008. It was built on Python but has

cross OS platform support. However, the Python backend usually still has C++ support for some

libraries such as the pooling layer. It uses the current symbolic operations for defining the graph of

computation, layers, network and optimization. One advantage of its development is the support

it provides for other wrappers such as Nolearn, Lasagne, Keras, which ease layer definitions in

Theano. It is still touted to be amongst the most effective deep learning tool in terms of com-

putation accuracy. Its layers are first defined, (being symbolic) but the datasets are supplied at

compile time. These definitions are also transparently revealed in the codes. Theano tensors are

a very important part of the symbolic definition, although visualizing the tensors for debugging

may require some extra effort of using the get value() function. So also, they may be set with
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the set value() function. Theano supports the primitive deep learning models such as restricted

Boltzmann machines and recent reinforcement learning models. Convolutional networks developed

by LeCun et al. (1998a), termed LeNet, was among the models that boosted the widespread use of

Theano. An example logistic regression layer would be defined as follows:

import LogisticRegression, theano.tensor · · ·

LogisticRegression(input, n in, n out)

Algorithm 5: Theano Logistic regression definition

where n in and n out are the input and output number of units to the layer. A downside of

Theano is that its networks’ (and layers’) definitions are not sequential and hard to think about, but

could be interesting once understood. Theano is also hard to debug, and it throws many confusing

errors with even the slightest wrong definition of the network. The latest Theano version available

in PyPI is 0.10.

B.1.3 TensorFlow

TensorFlow was a deliberate effort by Google to develop a faster software version of an older

machine learning software DistBelief. TensorFlow (Abadi et al. (2016)) was developed on Python,

C++ and CUDA to operate on multiple operating systems. TensorFlow encourages heterogeneous

computation via multi-GPU processing. This is facilitated by the common collectives offered by

NCCL (pronounced as Nickel) driver that enables reduction in the associated communication band-

width. TensorFlow provides multiple capability for a wide range of tasks. It specifically aided the

best performing speech recognition model. Tensorflow also runs on mobile Android and iOS plat-

forms. TensorFlow’s goal was previously for high throughput, lower precision evaluation which

was not suitable in model training. However, the requirement has improved for better accuracy in

recent years. TensorFlow has one of the coolest user interface called Tensorboard, which runs on a

local server of the machine. It can be used to monitor training, validation and testing progress of

the algorithm remotely, to visualize the network graph and flow of the data through the network,

among other things. A neural network model in TensorFlow starts by first inserting a placeholder
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for input tensors. Tensorflow has a very good documentation and allows several configurations

to be set in the algorithm. A logistic regression layer in TensorFlow can be added to a Tensor-

Flow.Session() as,

import tensorflow

· · ·

tensorflow.nn.softmax(dim, Name)

· · ·
Algorithm 6: TensorFlow Logistic regression definition

where dim is the number of output units and Name is the layer name. TensorFlow has about

the largest number of promoter companies, among which are Dropbox Inc., QUALCOMM, Intel,

AIRBUS, Airbnb, etc. The latest stable release of TensorFlow 1.3.0 was released in September

2017.

B.1.4 Torch

Torch (Collobert et al. (2011)) was developed by Ronan Collobert, Koray Kavukcuoglu and

Clement Farabet (initially released in 2002) to run on LuaJIT (Lua Just-In-Time) which is also

built on C programming language. Torch bears close similarity to MatLabs object oriented defini-

tion, thus it is very intuitive. Torchs most important advantage is that it can be applicable to all

tasks (e.g., computer vision, natural language processing, speech and text processing), it has sup-

port for almost all the APIs needed and has libraries for current and earlier models. Torch has an

improved training speed because of its design to use the CUDA driver is significantly encouraging.

It has the capability for GPU training with double tensor (or float 64), enabling better accuracy.

Torch also permits multi-GPU computation. Torch has been extended for use on mobile operating

systems. It has been used to build hardware implementations for data flows like those found in

neural networks. A logistic regression inherits some inputs from the previous layer and just accepts
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the number of output units. A neural network model simply adds,

· · · ,

require nn,

model.add(nn.LogSoftMax(int n units)),

· · · ,

Algorithm 7: Torch Logistic regression definition

The main caution with using Torch found in forums relates to knowing when to convert the

data input to CUDA tensor. Facebook Inc., Google Inc., IBM, Idiap Laboratories are among

the promoters of Torch software. Torch 7 is the latest version of the software. Torch became

a competitor with TensorFlow with the introduction of PyTorch. PyTorch enhances Torch in

capabilities such as the speed, data loading and graph creation. However TensorFlow is known

to trump PyTorch in data serialization to other software, deployment on hardware platform and

device management, among many others.

B.1.5 Keras

Of the most recent deep learning software friendly front end interface, Keras stands out because

of its active development. It was originated by Francois Chollet but is now open source. Keras

capability is increasing day by day because it easily wraps other deep learning platforms such as

MXNet, Deeplearning4j, CNTK, Chainer, TensorFlow and Theano. Keras was developed as part of

the research effort of project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating

System). Keras has the advantage of easy, intuitive, platform-independent (mostly) layer definitions

and usually inherits the qualities of the backend. A logistic regression layer is added in this library

as follows,

import Keras

· · ·

model.add(Dense(output dim, input dim, activation=’softmax’))

· · ·
Algorithm 8: Keras Logistic regression definition
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where dim represents dimensions. The main disadvantage of Keras found so far is that certain

distributed models such as denoising autoencoders and generative adversarial networks are easier

defined in the lower level software due to the top level coding that Keras offers. Also, some

APIs might not be available for some backend while they are available for other back ends. From

practice, getting 3D features in TensorFlow serving may be hard to work around (or might not yet

be available). Keras version 2.0.3 is about the latest version of the software.

B.2 Data and Model Parallelism in GPUs

A bid to reduce the computational time required for training a deep network with the limitation

of graphics cards capability is to use multi-GPUs similar to using multi-cores of CPUs for processing

datasets in parallel rather than sequentially. A cnn for instance require doing same computation

over several individual (or batches of) images. The computation time required also includes waiting

time before the sequential execution. However, by simply running the same program on several

data in parallel, the computation time can be reduced effectively. The second problem is the trans-

fer of data between the multiple GPUs for common computation at each iteration. The trade-off

between the single GPU and multi-GPUs are the dataset throughput speed and the result con-

vergence. Note: The assumption is that the processes are independent and can run concurrently.

Training using parallelism may be asynchronous or synchronous. While the asynchronous training

techniques enabled distributing the parameters, where such parameters usually are stale and may

hurt convergence. Collecting the hyper-parameters from multi-GPU synchronously has the poten-

tial to improve the efficiency. In synchronous data parallelism the workers and the master perform

the same computing and collective communication tasks at the same time with respect to some

shared variables.

Multi-GPU and multi-node uses communication collectives library (i.e., NCCL) functions such

as all-gather, all-reduce, broadcast, reduce, reduce-scatter and automatic detection of network

topology to determine the optimal communication path. This parallelism library uses the CUDA-

aware message passing interface (called ) for shared multiprocessing as well as the NCCL for
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enhancing communication. The convergence and capability of the MPI-based framework were

described by Ma et al. (2016). The package enabled using multiple GPUs with Theano in the case

of data parallelism, implying that whenever input data can be divided up among workers and the

final results returned to the host in a synchronous way. The goal is to make as little deviation from

using Theano with single GPU, running the same program on data batch and average parameters

after each iteration. The point-to-point (P2P) transfer and collectives operations are facilitated

by the MPI CUDA-aware GPUDirect P2P technology.GPUs already have interconnect capabilities

through PCIe and NVLink, so CUDA-awareness can enable the MPI operations to be GPU-based.

An all-to-all-sum-all-gather can then be used for the computation and communication. The data

precision would be reduced for data transfer and restored for data computation to reduce overhead.

The Theano-MPI (Ma et al. (2016)) was employed for Bulk Synchronous Parallel, Elastic Averaging

SGD (EASGD). CUDA-aware communication has the advantage that all GPUs can communicate

without sending parameter to the host. Platoon is another data parallelism platform that provides

asynchronous data parallelism within the compute nodes. Platoon however requires the Pycuda

and zeromq libraries

B.3 Summary

In summary, the basic requirement for all the software platforms are defined as: What shape

should the input data be, and what file formats are acceptable? How are layers and data defined for

the network? How modular is the software for defining new layers? How accessible are the back end

libraries for transparent computation and code debugging? How are the hyper parameters modified

for the experimentation? What form, shape and format should the network results and learned

model take? How easily can the results visualized during computation? The most fundamental

question for electing to use any platform is if there are already developed working model that

achieves my task or some other similar tasks. The key idea is to ensure that one is not re-inventing

the wheel, but to keep improving on them.
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